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SUMMARY

A prototype of an expert system has been developed which
applies qualitative or model-based reasoning to the task of

post-test analysis and diagnosis of data resulting from a rocket

engine firing. A combined component-based and process theory
approach is adopted as the basis for system modeling. Such an

approach provides a framework for explaining both normal and

deviant system behavior in terms of individual component

functionality. The diagnosis function is applied to digitized

sensor time-histories generated during engine firings. The

generic system is applicable to any liquid rocket engine but has

been adapted specifically in this work to the Space Shuttle Main
Engine (SSME). The system is applied to idealized data

resulting from turbomachinery malfunction in the SSME.
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i. INTRODUCTION

The task of post-test analysis and diagnosis of data

generated during rocket engine firings requires considerable

labor by a team of experts. Data in the form of sensor

histories displayed in graphical formats are perused to
determine if the engine firing was "as expected" or anomalous.

If an anomaly is suspected, attempts are made to identify the

cause of the anomaly. When engine firings are conducted on a

two-to-three day cycle, the team of experts can be occupied

almost continuously in data review - these same experts are

normally urgently needed to perform other tasks at the time of
the data review. An exacerbation of the manpower problem is

caused when experts retire or otherwise leave the team - their

replacement is difficult.

To help alleviate the manpower problem associated with data
review, an automated system is needed to provide assistance to

the experts. Such a system would be implemented on a digital

computer, would be capable of analyzing digitized test data -

identifying normal and anomalous firing data, and would be

capable of formulating hypotheses about the cause of the
anomalous results. Furthermore, the system should be capable of

justifying and explaining the stated hypotheses and recommending

further actions to better identify the causes of the anomalies.

Current research in the development of diagnostic systems

for rocket engine firing focuses on such approaches as expert

systems [1,2], neural networks [3-6], and signal processing

[7-9]. Traditional expert systems developed from the

associational knowledge of human experts tend to have a very

narrow scope both in terms of the extent of the domain and range
of problem solving activities they can handle. Also, such

systems do not provide sufficient flexibility for system

modification - modification of the object of interest often

calls for the development of a new expert system.

Model-based approaches [10-12] which integrate fundamental

principles, causal and common sense knowledge are capable of

overcoming the limitations of traditional expert systems.

Several recent applications of qualitative or model-based

diagnostic approaches appear applicable to the task at hand -

the analysis and diagnosis of rocket engine data [13,14].

In what follows, a description of the model-based approach

is discussed in a generic sense prior to application of the

concept to the SSME system.



2.0 REVIEW OF DIAGNOSTIC APPROACHES

Before focusing on the particular application (SSME) and

diagnostic system (EDIS) of primary interest here, a general

review of the approaches other researchers have pursued seems

appropriate. Relevant "Artificial Intelligence" (AI) literature
includes previous work on knowledge-based analysis and diagnosis

of the SSME and other space-related engineering systems. In

what follows, approaches taken by researchers considering

diagnostic systems similar to the SSME are summarized.

2.1 Generic Diaqnostic Paradigm

Work on diagnostic systems by Davis [13] and Genesereth

[15] and promising results in reasoning from first principle

[16] have made model-based reasoning an attractive option for

diagnostic systems. In particular, model-based reasoning allows

diagnosis to be performed without explicit fault assumptions. A

fault is simply characterized by a component not behaving as

desired without reference to a specific aberration, see Davis

[17]. Constraints are used to specify correct component

behavior. A constraint is a qualitative or quantitative

relationship between the parameters which describe the behavior

of a component. A component fault can thus be defined as the
violation of one or more constraints associated with the

component. Model-based diagnosis using constraint propagation

potentially covers all possible faults of a device, not only

those explicitly enumerated by an expert. Diagnostic

completeness is, however, limited by the accuracy and

completeness of the model [17]. For example, parasitic causal

pathways may exist between components, such as heat transport or

crosstalk, which cannot be detected if the relevant kind of

component interaction has not been modeled.

Diagnostic paradigms have been formulated based on the

availability of a model which contains device structure, i.e., a

decomposition of the device into interconnected components, and

behavior constraints for all components of the device. For

example, Davis [17] introduced "constraint suspension" and

Genesereth's DART [15] program uses the "resolution residue"

procedure. Most diagnostic procedures follow the Generate -

Test - Discriminate paradigm. In the first step, fault

hypotheses are generated. A hypothesis may explicitly enumerate

a specific set of components which are assumed to be faulty, or

a hypothesis may be implicitly defined by a set of components at

least one of which must be faulty. The set of hypotheses must

be complete but it will, in general, contain too many

candidates, although most designs try to keep the set as small

as possible. Hypothesis testing eliminates those candidate

hypotheses which cannot account for all observed symptoms.



Theoretically, it is possible to combine hypothesis generation

and testing, i.e. to generate viable hypotheses only, but in

practice it often proves simpler to separate these two steps.

If several hypotheses survive testing, then more data need to be
observed to discriminate between them. Electronic

troubleshooting systems must determine the test which promises
to reveal the most new information. The FIS system [18], the

IN-ATE approach [19], and the general diagnostic engine (GDE)

method [20] use probabilistic methods to propose the next "best"

test. Approaches based on the minimum entropy principle, such as

GDE, appear to be best. Note, however, that for SSME post-test

analysis no further tests are possible.

DeKleer and Williams [20] have presented GDE, a method for

diagnosing single and multiple faults in systems which can be

modeled by interconnected modules, each characterized by

constraints between input and output parameters. Essentially the

same method has also been proposed by Reiter [21] except that

his derivation is based on formal logic. GDE predicts values

for device parameters given some known values, e.g., measured or

input values, by propagating the known values through the

component interconnections and constraint expressions. Note that
constraints must be non-directional, i.e. the system must be

able to reason from inputs to outputs as well as from outputs to

inputs. Davis [13], for example, supplies "simulation" and
"inference" rules for forward and backward propagation,

respectively.

GDE detects a "symptom" when at least two different values

are predicted (or determined) for the same parameter based on

different input or measured values. Value prediction depends on

the assumption that each component which was traversed during

constraint propagation enforces its constraints correctly.

Existence of a symptom indicates that at least one constraint

must be violated and thus one component involved in the symptom

must be faulty. A component is involved in a symptom if it lies

on a propagation path which leads to the symptom, i.e. its

behavior influences the predicted value. A symptom gives rise

to a set of fault hypotheses. GDE represents hypotheses

implicitly. Sets of components which contain at least one

fault, named "conflicts" or "conflict sets", are generated by

combining all components which were involved in creating the

symptom. Hypotheses are derived from these conflict sets by

forming sets of components such that at least one member of each

conflict set is represented in the hypothesis set. If a

hypothesis exists which contains only one component then a

single fault in this component can account for all symptoms.

Otherwise multiple faults must be present.

The diagnostic paradigm exemplified by GDE is very powerful



but some caution is appropriate before recommending it for every

diagnostic application. DeKleer and Williams [20] point out

that complete prediction of component and system behavior is

currently beyond the state-of-the-art. The SSME [22] is a good

example of a complex dynamic system whose behavior is very
difficult to model and to predict. A large numeric

power-balance model (PBM) [23] is used for post-test data

reduction and pre-test performance prediction. The PBM searches

iteratively for a set of consistent engine parameter values. It
is valid only for normal operation and some small deviations.

Clearly, such a model cannot be used for constraint propagation,
because it cannot propagate anomalous parameter values and

because it cannot perform local propagation at each module.

2.2 Reduced Prediction Models

Given that the SSME components cannot be modeled by exact

constraints, other, less accurate methods of modeling have to be

explored. Qualitative modeling [16] eliminates the need for
exact numeric constraint equations. Only qualitative parameter

values, such as normal, low, high, and their trends, such as

stable, increasing, decreasing, are considered. Several systems

have been developed which can perform system simulation using

qualitative models only, see [16]. In [24], for example, DeKleer
and Brown define qualitative models for components as sets of

qualitative state - confluence pairs. Qualitative states loosely

correspond to operating regions of devices governed by different

laws. Confluences are equations constraining qualitative values

of parameters, based on a special qualitative calculus.

Confluences and qualitative states are usually derived from
conventional mathematical models.

Forbus [25] presents another approach to qualitative

modeling which is process-centered instead of

component-centered. A process relates the parameters of

several interacting objects (components). For example, a heat

flow process is instantiated when a heat source, a heat sink,

and a heat path are present and properly aligned.

Qualitative models have the disadvantage that counteracting

influences lead to multiple possible conclusions about the

behavior of a parameter value. For example, if two input

parameters are added to produce the output and the signs ("high"

or "low") of the inputs do not agree, the sign of the output

cannot be predicted uniquely. The same holds true for opposite

trends at the inputs. Predictive ability is limited because the

relative strengths of conflicting influences are not

represented.

Subsequently, researchers have modified the concept of



qualitative modeling by replacing qualitative confluences by

simplified analytic equations which allow exact comparison of

conflicting influences and the use of known component

parameters, such as efficiency coefficients. Govinderaj [26]

describes a qualitative approximation methodology using
"moderate fidelity simulators". System components are modeled

using simplified dynamical equations abstracted from continuity

and compatibility conditions. Biswas [i0] describes another

modeling methodology using analytic equations which approximate
actual device behavior.

Even less information is required for causal modeling.

Causal models, in their simplest form, only describe the causal

relationships between aberrations of component behavior.

Component behavior is abstracted into function and the
functional model merely describes which functions, and therefore

which components, depend on each other. All that can be said

about a pump, for example, is that its function is to create a

pressure increase, whether it performs this function or not, and

which subsequent function depends on the correct functioning of

the pump. An extended causal model will enumerate types of

anomalies of functions and how anomalies in one component cause

anomalies in the functions dependent on it. In a staged pump

system, for example, reduced pump performance in the first

stage will increase pump workload in the second stage.

Still more detail can be incorporated into a causal model

if deviations of parameter values are considered instead of

deviations in overall function. For example, anomalous pressure

at the input of a pipe will result in anomalous pressure at its

output. Low input pressure to a pump leads to low output

pressure unless a controller increases the power driving the

pump. This detailed causal model approaches the capabilities of

a qualitative model, except that it describes deviations from a

norm instead of absolute behavior. Govinderaj's system [26] also

reasons about deviations from steady-state but uses quantitative

equations. He advocates his approach for applications involving

large complex dynamic systems such as a marine steam power

plant.

A most interesting aspect of functional models is the

possibility to switch between levels of abstraction and relate

the functioning of a component to the functioning of the

enclosing module. The intrinsic function of a pump is to expel

fluid at a pressure higher than at the intake, while in the

context of the SSME, the function of the pump may be to push

fuel through the cooling circuits at a high enough rate.

Sembugamoorthy and Chandrasekaran [27] and Bylander [28] have

presented an approach to this problem but more needs to be done.

5



2.3 Alternative Diaqnostic Methods

As suggested by the classification scheme for diagnostic

systems delineated by Milne [12] we will discuss compiled

knowledge systems in the following, having completed the

presentation of structural, behavioral, and functional models.

Abstracting device behavior and function beyond causal

models leads to "compiled" diagnostic systems which explicitly

associate symptoms with fault hypotheses. Heuristic, pattern

matching, or associational systems belong to this category.

Most commercial expert systems are based on compiled heuristics

and specialized software tools have been developed to help build

them. Frequently, heuristics are stored as production rules.

The validity of a compiled system depends on completeness of the
rule base and exhaustive enumeration of possible faults. Rules

can be created by experts or extracted from case data.

The advantages of heuristic based systems are that they can
deal with common faults rapidly and economically, that they do

not need good models of the device, and that the user group is

more likely to accept a knowledge-based system if they were

involved in its creation. The disadvantage of expert systems

based on application-specific heuristics are that they only

cover explicitly enumerated faults, that they are difficult to
maintain and extend, and that they apply only to a specific

application.

Continuing research on compiled knowledge systems has

generated approaches to generalize and reuse heuristics from one

application to another, see, for example, Malin and Lance [29].
Generalization of heuristics which are tied to particular

components requires reversing the symptom-fault heuristic to a

fault-symptom prediction format. Component models which are to

produce heuristic rules thus need to facilitate enumerating the

possible faults of a component and to predict the effects of
those faults on component behavior. These models differ from

the models discussed above in that they contain knowledge about

specific faults and effects of faults. Of course, they are also

used differently, i.e. to create heuristic rules which embody

symptom-fault associations.

2.4 Use of Fault Models

Fault models, i.e. descriptions of how the behavior of a

component changes given a fault has occurred, have the potential

to assist in selecting fault candidates, testing fault

hypotheses, and refining fault hypotheses. Substantial
differences in the use of fault models warrants a more detailed

analysis of the utility of fault models. Some model-based



systems, such as GDE, operate totally without resorting to the

use of fault models. They operate under the assumption that

hypotheses can be pruned and refined by collecting additional

data until a unique fault (or set of faults) has been
determined.

Fault models may be used to determine if a candidate

component, in fact, has a failure mode which can account for the
observed symptoms. This method can be applied in model-based

systems when several competing hypotheses remain but no further
data can be collected to discriminate between them. At this

point some assumptions must be made in order to proceed with the

diagnosis. Using fault models to eliminate hypotheses implies

the assumption that the enumerated fault modes are more likely

to occur than other, as yet unconceived, faults.

Fault models can also refine a unique hypothesis by

postulating a particular fault in a component. Generic

diagnosis, such as the GDE methodology, pinpoints only a

component, but does not identify how it has failed. If the
actual fault is of interest, or if the fault is to be localized

more precisely within the component but no detailed component

model is available, then fault models can be matched against the

observed symptom.

2.5 Mixed Paradigm Systems

Model-based and heuristic-based diagnostic systems each

have unique advantages and disadvantages as discussed above. To

incorporate both paradigms into one system could potentially

combine the strengths of each approach. Establishing smooth

cooperation between these divergent methods poses some problems,
however. Model-based systems execute in a sequential,

algorithmic manner, where hypotheses are first generated, then

tested, and finally discriminated. Heuristic rule-based systems

for the most part operate in a goal-driven associational

fashion. Hypotheses are created one at a time; each is

evaluated separately using observations or intermediate

inferences left over from processing a previous hypothesis.

Hypotheses may be discarded any time the conditions of a rule

are satisfied by some pattern in the data.

Typically, systems which incorporate model and

heuristic-based reasoning alternatively execute two separate

reasoning mechanisms for each paradigm. For example, Fink [30]

describes the IDM (integrated diagnostic model) system which
first executes a heuristic module and then switches to a

model-based module when the heuristics fail to provide a

diagnosis. A conversion mechanisms is provided which allows

sharing of information between the two modules. Another



approach, specified by Pazzani and Brindle [31], calls on
heuristic rules to hypothesize faults and device models to

confirm or deny those hypotheses. Pflueger [32] mixes
experiential diagnosis based on associational rules and

model-based reasoning using a "logic function model" and

constraint propagation and suspension. Rules are used to

accelerate recognition of frequent faults and in cases where

components cannot be adequately modeled.



3. DESCRIPTION OF SPACE SHUTTLE MAIN ENGINE SYSTEM

The Space Shuttle Main Engine (SSME) is a reusable, high

performance, liquid-propellant rocket engine with variable

thrust. Figure 1 contains a schematic diagram of the main

components of the engine. The engine burns liquid oxygen and

liquid hydrogen at a mixture ratio of 6:1 to produce a sea

level thrust of 375,000 pounds. The chamber pressure is

approximately 3000 psia and the SSME is throttleable over a

range of 65 to 109 percent of rated power level. The engine is

regarded as a high-performance engine due to the high chamber

pressure and the use of a staged combustion power cycle.

In the SSME staged combustion power cycle, the propellants

are partially burned at low mixture ratio, very high pressure,

and relatively low temperature in the preburners to produce

hydrogen-rich gas to power the high-pressure turbopumps. This

hydrogen-rich steam is then routed to the main injector where it

is injected along with additional oxidizer and fuel into the

main combustion chamber. Hydrogen fuel is used to cool all

combustion devices directly exposed to high-temperature products

of combustion. An electronic controller automatically performs

checkout, startup, mainstage, and shutdown operations.

3.1 Major Components

Key components to the SSME system are four turbopumps, two

low pressure and two high pressure:

i) low-pressure fuel turbopump (LDFTP)
2) low-pressure oxidizer turbopump (LPOTP)

3) high-pressure fuel turbopump (HPFTP)

4) high-pressure oxidizer turbopump (HPOTP)

These pumps are identified in Fig. i.

The LPFTP and LPOTP are axial-flow pumps that operate at

relatively low speeds and provide the pressure increase required

at the inlets of the respective high-pressure turbopumps.

The HPFTP is a three-stage, centrifugal-flow pump driven

directly by a two-stage hot-gas turbine. The HPOTP consists of

two centrifugal-flow pumps on a common shaft and driven directly

by a two-stage hot-gas turbine. The main pump supplies oxidizer
to the main combustion chamber, the LPOTP turbine, and the

preburner oxidizer pump. The preburner oxidizer pump raises the

pressure of the oxidizer and supplies it to the fuel and

oxidizer preburners.
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The hot-gas manifold (HGM) is the structural backbone of

the SSME engine system in that it supports two preburners, two

high-pressure pumps, the main injector and the main combustion
chamber. It interconnects the fuel and oxidizer preburners (FPB

and OPB) to the main chamber injector. The FPB and OPB generate

fuel-rich gases that power the HPFTP and HPOTP.

The main combustion chamber (MCC) is attached to the HGM
and consists of an internal coolant liner and an external

structural jacket. The nozzle is bolted to the MCC.

In addition to the items mentioned above, the SSME key

components are connected by various interconnects: main

propellant articulating ducts, fluid interface lines, and

component interconnects. These interconnects contain important
valves such as the main oxidizer valve (MOV), main fuel valve

(MFV), fuel preburner oxidizer valve (FPOV), oxidizer preburner

oxidizer valve (OPOV), and the chamber coolant valve (CCV).

For simplicity, the SSME system considered in this work has

been simplified by omitting the pogo suppression system, the

propellant tank pressurization system and certain minor

propellant ductwork - none of these omissions change the basic

operation of the system. The simplified system is illustrated

in Fig. 2.

For the purposes of system modeling, these components need

more definition. This definition is provided in Section 4.3.

3.2 Interconnectivity

The interconnectivity of the SSME system key components is

illustrated schematically in Fig. 2. As can be seen the

turbines and pumps are directly (mechanically) connected, the

preburners are directly connected to the respective turbines and

all other components are connected by propellant ducts.

Precise statements of interconnectivity are described in Section
4.4.

3.3 Test Data

Test data from SSME engine firings are recorded as analog

signals on magnetic tape and later digitized and stored in files
on hard disks. The data is in the form of time-histories of

individual sensor output. The EDIS system accesses these

digitized data files and performs diagnostic functions by

comparing data values with expected or calculated values.

Simple temperature, pressure, and shaft speed

Ii
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time-histories from a typical SSME static firing are illustrated

in Figures 3, 4, and 5. As can be seen, the data contains

engine start, mainstage, and shutdown phases. Current EDIS

operation is restricted to consideration of only the mainstage

of operation.
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4. ENGINE DATA INTERPRETATION SYSTEM (EDIS) DESCRIPTION

4.1 Diagnostic Paradiqm

Goals - Selection of a diagnostic paradigm to be integrated

into the SSME data review process was constrained by a number of

goals specified at the outset of the project. The finished

system was to contain generic propulsion and engine operation

knowledge and to be configurable for various engines and engine
variations. The SSME itself is undergoing continual

modifications which must be accounted for by a diagnostic

system. The diagnostic operation should be easy to modify and

upgrade in order to provide a stable platform for future
enhancements. The system should be able to explain its

reasoning steps in terms and formats familiar to the user. The

reasoning process should be controlled by an explicit strategy
module which affords the user the opportunity to change and

direct diagnostic reasoning. The system should be able to use
available numeric engine models and records of past engine

performance. The diagnostic paradigm developed in this work
addresses these issues. It will be described below.

Specific Considerations - Diagnosis of the SSME differs in
some important aspects from diagnosis of devices as commonly

reported in the literature. The SSME is a complex system, and
therefore difficult to model, not because it has a large number

of components but because the thermodynamic processes are

non-linear and coupled, and because some of its parameters are

regulated by an engine controller. The controller will not

allow deviations of controlled parameters within the limits of

its capability. Deviations will show up at the actuated

variables instead.

Testing an SSME is very complicated, labor-intensive, and

expensive. It is not possible to repeat a test to get more or
different measurements due to the limited life of individual

components and the unique conditions surrounding each test. The

question of selecting additional points to probe is mute. To
offset the lack of additional measurements an unusually large

number of parameters are measured during each test. In many
cases redundant instrumentation measures the same parameter.

Access to an almost complete set of test data is beneficial.

Nevertheless, the amount of data recorded during one test makes
it difficult for the reviewers to select relevant information

from the bulk of data.

Due to the lack of a simple and accurate engine model, the

data review process is largely based on comparing test data to

records of previous tests, to average and normal variation data,

and to absolute limit data. These comparison data are stored in

17



databases and can be plotted for visual comparison during the

review process. Some of the historic data records were measured

on engines which turned out to be defective. These records can

be compared to new records when the same fault is suspected to

be present in the current test. Available numeric engine models

are executed in order to quantitatively characterize engine and

turbomachinery performance and sometimes to predict effects of
faults. Fault prediction is limited to small fluid and gas

leaks and pipe obstructions.

Diagnosis is performed in the context of the data review

process only, i.e. off-line. Real-time operation of the

diagnostic system is not envisioned at this time, especially

since interaction with review personnel is required. Ways of

adapting the diagnostic paradigm to on-line monitoring and

diagnosis may be investigated later.

Design - The SSME review process is composed of several

tasks. First, test data are inspected to detect data anomalies.
Anomalies are then characterized according to whether they are

value, i.e. static, or dynamic deviations, whether they occur

during start-up, main-stage, or shutdown, and whether they are

consistent or erratic. Anomaly explanation is based on the

experience that anomalies can be caused by sensor problems, data

manipulation and presentation artifacts, and by actual

engine-related causes. The SSME will produce slightly different

data at every test because of random variations, because of wear

in the turbo-machinery, and because of replaced turbo-machinery.

Actual engine problems can be related to turbo-machinery alone

or to faults somewhere else in the engine. Finally, engine

behavior may deviate from the norm because of changes in

throttle control demanded by special test objectives.

A knowledge-based system to support the review process must

take all these real and pseudo-faults into account when

interpreting data anomalies. Our design calls for the following

steps. Anomaly detection, verification, and fault diagnosis.

Anomaly verification eliminates deviations due to test

objectives, data manipulation, random variations, and sensor

problems from consideration. Fault diagnosis finds

turbo-machinery and general engine faults. At this point only

fault diagnosis has been developed in detail. The diagnostic
method is described in the next section.

The above described method of first classifying anomalies

into one of several categories is an example of diagnosis by

successive refinement or focusing. Chandrasekaran [33] has
identified hierarchical, successive refinement as one of a few

generic reasoning methods. Hierarchical diagnosis (or problem

solving in general) is commonly used by human experts [34]
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because it reduces the complexity of diagnostic search. The

diagnostic method loses some generality, however, when anomaly

explanations are separated into classes. Constraint propagation
techniques, for example, can find multiple faults only under the
condition that a single complete model exists which fully

describes the system to be diagnosed. Unfortunately, it is hard

to imagine a model which can combine physical descriptions,

control variations, and data manipulation procedures. Sensor

behavior could be incorporated fairly easily, though.

Method - The diagnostic procedure is compartmentalized into

hypothesis generation, testing, and discrimination. The

architecture of the diagnostic system, see Section 4.2, provides

means to explicitly represent anomalies, hypotheses, and

decisions about hypotheses, as well as means to dynamically

schedule knowledge sources. These architectural features make

it possible to combine and coordinate various diagnostic

paradigms. For example, hypotheses can be created by a
constraint propagation mechanism as in GDE [a], by heuristic

rules contributed by a human expert, or by rules induced from
exhaustive fault simulation. In every situation the most

appropriate paradigm can be chosen in order to maximize system

performance. In addition, hypotheses can be formulated and
examined with the help of numeric engine models and records of

previous test data.

Constraint-based diagnosis based on a causal model of the

SSME is the primary method which ensures maximum fault coverage.

In Section 4.3 we will present the constraint propagation

mechanism and the qualitative model in detail. Heuristic rules

acquired from human experts are included to serve two purposes.
Rules are able to identify common faults quickly and they can be

applied to discriminate between hypotheses when not enough data

are available to disambiguate the diagnosis. Moreover, we plan

to incorporate a robust rule acquisition mechanism which will

allow experts and prospective users to add heuristics to the

system. This will, we hope, increase acceptance of the system
for routine use.

Hypothesis Generation - Constraint propagation in the

qualitative model and heuristic rules generate hypotheses.

Hypotheses created by constraint propagation are consistent with

the observed symptoms but not necessarily with the expected

fault modes of components. Hypotheses constructed by heuristic

rules may not be consistent with the symptoms or the fault

modes. Their validity depends totally on the quality, i.e.

correctness, consistency, and completeness, of the expertise

incorporated in the rules. Quality has to be assured during the

]_nowledge acquisition process.
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Hypothesis Testinq - The validity of hypotheses created by

constraint propagation depends on the accuracy of the

qualitative model. Some hypotheses produced by a model of
little detail can be eliminated when a more detailed model is

consulted. For example, hypotheses generated from a model based

on qualitative relations only, may be tested with the help of a

simplified quantitative model which characterizes anomalies and

behavior more accurately. Chances of eliminating valid

hypotheses are negligible unless the model is overly simplified.

Tests may also be based on physical plausibility, e.g.

conservation laws. For example, a component cannot exhibit a

fault mode where energy is created.

Hypothesis Discrimination - When several hypotheses remain

after testing, hypotheses are ranked according to plausibility.

Fault plausibility is increased by agreement with numeric fault

simulations, by correlation with predetermined fault models, by

agreement with previous anomaly - fault observations, and by

observed frequency of occurrence of the fault. The final result

of diagnosis is a ranked list of plausible fault hypotheses
which could not be ruled out. In general, no single unique

fault can be determined.

4.2 Architecture

EDIS is built upon a modular blackboard architecture. EDIS

system modules are defined and implemented independently from

each other, lending flexibility to system development,

enhancement, and maintenance. The EDIS system is modularized

according to functional criteria which do not necessarily

reflect physical modularization. Functional modularization

facilitates intelligent scheduling and allows the user to

actively participate in the problem solving process via a

mixed-initiative dialogue. Major functional units include data
retrieval, sensor validation, diagnosis, and user interfacing.

Functional units may be decomposed into smaller tasks. The

diagnostic process, for example, is subdivided into anomaly
detection and classification, hypotheses generation, hypotheses

testing, and hypotheses discrimination. All of these modules

operate on the whole SSME model because behavior of SSME

components cannot, in general, be evaluated in isolation.

All EDIS modules share a common explicit structural and

functional model of the SSME. More specialized models, such as

turbo machinery models and combustion process models, for

example, may reside within individual modules. Reasoning based
on these special purpose models is separate from the basic

diagnostic process. A similar separation has been observed to

exist in the current data review process where turbo machinery
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and other specialists are generally only consulted to verify

hypotheses created from analysis of engine performance.

The blackboard serves at the same time as central

inter-module communication medium and as repository for system

state information. The blackboard is the common communication

medium through which all modules exchange information. Modules

encapsulate reasonably self-contained functions so that the need
for inter-module communication is minimized. Anomalies,

hypotheses, and other important items are stored explicitly on
the blackboard. There they can be read by other modules and the
blackboard serves as a communication medium. At the same time,

however, the information stored on the blackboard represents the

state of the analysis process since findings, hypotheses, and

also tasks (previously executed as well as scheduled ones) can

be found there. Normally, information is never deleted from the

blackboard. Instead, items are marked as obsolete when

necessary. Obsolescence decision time and agent are recorded
with the item. Decisions about data validity are thus made

explicit and reversible.

A complete, explicit account of system state makes in-depth

explanation of system actions and reasoning possible.

Explanations can be prepared according to current system goals

and against the background of previous decisions and events.

Explanation becomes independent from specific reasoning

implementations, such as rules, and even reasoning mechanisms.
Conclusions, decisions, and supporting information can be

examined instead of rules.

Module functions can be classified into control, diagnostic

reasoning, data interface, and user interface functions. A

strategy module controls the scheduling of all other modules.
It is scheduled automatically when the EDIS system is first

initialized. The strategy module creates tasks on the

blackboard which identify the modules (also called knowledge

sources in the context of blackboard management) to be executed.

The strategy module can schedule itself repeatedly to monitor

the progress of data analysis and to possibly reschedule tasks.

User interface tasks present data to users and ask for input.

Both textual and graphical displays are available on the PC

platform. For example, the user completes an input form to

supply test and data file names and the type of comparison data
used for anomaly detection. In later stages of reasoning

anomalies, hypotheses, and inferences can be presented and

verified or rejected by the user. A graphical representation of

SSME structure helps visualize hypothesized causal relations

between symptoms and faults. Specialized interface modules can

be provided to access any of the various data bases which

contain perfromance, configuration, and fault data.
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The blackboard data structures mirror the object-oriented

data structures of the reasoning modules. The blackboard
contains data in the form of classes, class members, attributes,

and attribute values. Classes define structure and attributes of

their members. Attributes have names and values. Values are

stored as character strings in order to be compatible with the

knowledge engineering tool used (KES). Blackboard data

structures are isomorph to KES class definitions. The
blackboard assumes, however, that data are correctly formatted,

i.e. no syntax checking is performed.

Blackboard data reflect the functional diversity of the

system modules and can be classified into control, model, and

reasoning data and parameter or input values. Control
information constitutes the link between modules (especially the

strategy module) and the system framework. Control information

is interpreted by the scheduler and dispatcher which generate
the actual flow of program execution. Members of the classes

TASK and KNOWLEDGE SOURCE represent control information on the

blackboard. A task is characterized by the attributes name,

priority, and knowledge source. Task priority guides the

scheduling mechanism in selecting the next task to execute. The

specified knowledge source indicates

4.3 Domain Modeling

Following Biswas [i0], the structural schematic of the SSME

system is described in terms of primitive components, complex

components, component categories, a set of interconnections, and
fundamental processes. Table 1 contains a list of primitive

components for the SSME system and Table 2 the primitive

component categories. All turbopumps are considered to be

complex components consisting of turbine and pump primitive

components. Note that a distinction is made betwen gas-turbine

and hydraulic-turbine turbopumps - different thermodynamic

relations are used to describe the behavior of gases and liquids

in turbine processes.

SSME structure is modeled as a collection of interconnected

instances of components, each characterized by a generic

thermodynamic process, see Section 4.4. SSME behavior is
modeled in terms of deviations of engine parameter values from

normal values. Sets of normal values have been collected at

NASA MSFC for each operating region and are available in a data

base. Deviations of parameter values can be propagated through

the component network using component behavior models.

Component behavior is modeled using constraints at two levels of

specificity. A purely qualitative model is valid for any

component of a given type, e.g. pump, pipe, etc. It relates
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TABLE i. LIST OF PRIMITIVE COMPONENTS

NAME

LPFTT
LPFPP

LPOTT

LPOTP

HPFTT
HPFTP

HPOTT

HPOTP

FPB

OPB
MCC

MFV

MOV

FPOV

OPOV
CCV

MCON

-NOZ

FI01

FI02

FI03

FIll

O201
0202

0208

HYI01

HYI02

HYIII

OX201

OX208

DESCRIPTION

Low Pressure Fuel Turbopump Turbine

Low Pressure Fuel Turbopump Pump

Low Pressure Oxidizer Turbopump Turbine

Low Pressure Oxidizer Turbopump Pump

High Pressure Fuel Turbopump Turbine

High Pressure Fuel Turbopump Pump

High Pressure Oxidizer Turbopump Turbine

High Pressure Oxidizer Turbopump Pump
Fuel Preburner
Oxidizer Preburner

Main Cumbustion Chamber
Main Fuel Valve

Main Oxidizer Valve

Fuel Preburner Oxidizer Valve

Oxidizer Preburner Oxidizer Valve

Chamber Coolant Valve

Controller

Nozzle

Fuel Duct i01

Fuel Duct 102

Fuel Duct 103

Fuel Duct iii
Oxidizer Duct 201

Oxidizer Duct 202

Oxidizer Duct 203

Hydrogen Fluid i01
Hydrogen Fluid 102

Hydrogen Fluid iii
Oxygen Fluid 201

Oxygen Fluid 208

TABLE 2. PRIMITIVE COMPONENT CATEGORIES

a) Gas Turbines

b) Hydraulic Turbines

c) Pumps

d) Ducts

e) Fluids

f) Valves

g) Preburners
h) Combustion Chambers

i) Controllers

j) Nozzles
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qualitative deviations of input parameters to qualitative

deviations of output parameters assuming the component is

functioning correctly. Simplified quantitative models can be

made available for the components of a particular system.
Design parameters and empirically determined coefficients have

to be incorporated into the quantitative equations. The

quantitative model can determine and process relative strengths
of influences.

In some cases local propagation results are indeterminate

using either model. Indeterminacy is inevitable when parameter

values depend on boundary conditions which can only be derived

from an analysis of the complete system. Thermodynamic systems

rarely exhibit unidirectional causality at the parameter level,
i.e. parameter values almost always depend on the behavior of

neighboring components and on boundary conditions. Also,

component behavior is described by at least two or more

interacting parameters, e.g. fluid or gas pressure, velocity,
and temperature. When a constraint cannot be verified or used

due to lack of data,- the assumption is made that no or the
smallest possible deviation from normal behavior has occurred.

Assumptions are recorded and verified or rejected when new data

become available, for example, during analysis of another
component.

Fundamental constraints which describe correct component
behavior are derived from energy conservation laws. When a

constraint does not mention measurable parameters explicitly,

normative constraints are added which hold under the assumption
that the quantities on both sides of the fundamental constraint

are constant. Normative constraints do not determine correct

behavior but relate measurable parameters to fundamental

constraints. They correspond to a more detailed model of the

component in terms of thermodynamic processes. They organize the
prediction/verification process so that behavior constraints can

be verified incrementally and that necessary assumptions become
evident.

Qualitative Behavior Model - Qualitative models consist of

qualitative fundamental constraints, normative constraints, and
auxiliary qualitative relations between quantities in different
constraints. Constraints and relations determine existence and

direction of the deviation in a quantity based on a deviation in

a related quantity. Conceivably, deviations could additionally
be characterized by qualitative statements of relative size but
the current design does not use size. Constraints and relations

are expressed in the same syntax. The general form of a

qualitative statement is "Quantity-i Relational-Operator

Quantity-2". The two relational operators are "is proportional

to" (p) and "is inversely proportional to" (ip). A quantity is
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either a state parameter of the fluid or gas, such as pressure,

a derived parameter, such as pressure difference, or an explicit

measure of energy.

The semantics of fundamental and normative constraints and

of auxiliary relations differ. A fundamental constraint

captures an energy balance which must hold when the component is

operating correctly. Faults are assumed to introduce additional

losses, in general. Normative constraints must hold as long as

the quantity they depend on remains constant. Auxiliary

relations describe how a change in the presumably constant

quantity (called a "pseudo-constant") are reflected in the

quantities of the normative constraint. An auxiliary relation

thus couples a normative relation to a fundamental relation via

its pseudo-constant quantity. Normative constraints may be

coupled to a fundamental constraint through a chain of other
normative constraints in order to deal with more complex cases.

For example, the behavior of a pipe is characterized by the

single fundamental constraint CPI: "Pressure-Difference p

Velocity", meaning that the difference in fluid pressure

measured at both ends of the pipe is proportional to the

velocity of the fluid. This constraint was derived from the

fluid energy balance neglecting possible differences in height
and diameter of the pipe ends. The pipe has one normative

constraint CP2: "In-Pressure p Out-Pressure" which holds (at

least) as long as the pseudo-constant "Pressure-Difference"
remains constant. One can observe that the normative constraint

captures a superficial rule-of-thumb analysis of pipe behavior.

Auxiliary relations are applied when the pseudo-constant has (or

is suspected to have) changed and its changes have to be
related to changes in the parameters of the normative

constraint. In the example the auxiliary relations are

"In-Pressure p Pressure-Difference" and "Out-Pressure ip

Pressure-Difference", signifying that the pressure difference

decreases with rising outflow pressure and decreasing inflow

pressure.

The constraints associated with a pump are more complicated

because energy is added to the system. In the case of the SSME

energy is provided to each pump by its associated turbine.
There are two fundamental constraints, one describing the

transfer of mechanical energy from the outside (the pump shaft)
to the fluid and one describing the transformation of fluid

energy into a pressure difference. The fundamental constraints

are CUI: "Mechanical-Power p E-V-Fluid" (E-V-Fluid refers to the

fluid energy-velocity product) and CU2: "Fluid-Energy p
Pressure-Difference". Constraint CU2 shares normative

constraint and auxiliary equations with constraint CP1 described

above in the context of the pipe model. Constraint CU1 has two
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normative constraints associated with it, CU3: "Fluid-Energy ip

Velocity" related to pseudo-constant "E-V-Fluid" and CU4:

"Torque ip Shaft-Speed" related to pseudo-constant
"Mechanical-Power". Constraints for other components are defined

in a similar manner.

Simplified Quantitative Behavior Model - Simplified

quantitative models have the same general structure as

qualitative models. Fundamental equations express energy
balances and normative equations define how a quantity (the

associated pseudo-constant) in a fundamental equation can be

determined from component parameters. Normative equations thus

perform the function of both qualitative normative constraints

and qualitative auxiliary relations. Therefore, auxiliary
relations are not needed in the quantitative model. Constraints

are expressed as analytic equations between parameters.

Simplified quantitative equations, i.e. constraints, are
derived from exact thermodynamic equations neglecting as many

terms as possible and performing linearization since the models
describe deviations from the norm only. Equations are

conditioned on a particular target system using application

specific coefficients. Numeric coefficients can be determined

from design specifications and from analysis of previous system

performance. Some coefficients describe invariant properties of

components, such as the friction coefficient of a pipe and

should always remain constant. Other coefficients are variable,

such as the efficiency of a turbopump which may change from one

test to another. Limits on variation are imposed on non-constant

coefficients instead of testing them against a single given
value.

Reasoninq With Models - The propagation process through the
SSME model raises different issues as compared to a situation

where few data are known to begin with. Propagation does not

have to proceed across known values. Therefore the component

network disintegrates into small subnets isolated by locations

with known parameter values which can be analyzed individually.

In fact, the decisions not to look beyond known values combined

with not including conflicts based on two propagated values are

equivalent to considering only minimal conflicts in GDE. There
are some cases, however, where this strategy misses the real

cause of the observed symptom, for example, when a component
fails due to a fault at its input but masks the original fault.

Only the secondary fault will be detected by constraint based

reasoning. Currently, we are ignoring such induced secondary
faults.

The goal of the reasoning process is to find which

components could be responsible for an anomalous parameter
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value. Following the example of GDE, conflicts are generated

which contain components at least one of which must be faulty.

Fault hypotheses are then created such that all conflicts are

explained. In EDIS conflicts may not accurately reflect the
status of the SSME because of modeling inaccuracies and

indeterminacies. EDIS will rather post too many conflicts than

too few. In GDE components which contribute to a prediction are

collected while the prediction is being generated, i.e. during

value propagation. Components encountered during propagation

are responsible for generating the correct value. EDIS does not

propagate values to predict normal values or to find symptoms.

Instead, components responsible for symptoms are found after the

symptoms, i.e. the anomalous data readings, have been
identified.

The reasoning process uses information stored in component

models to predict parameter deviations and to verify that a

given set of values conforms to the behavior constraints of the

relevant components. Input and output are not distinguished
since constraints are non-directional. Normal behavior is

tacitly assumed. Unknown parameter values or quantities in

constraints are assumed to be nominal but such assumptions are

made explicit. Note that propagation of normal values is

unnecessary in a behavior model describing only deviations.

Propagation would only conclude that inferred parameter values

are also normal, which is assumed anyway. This is a

simplification compared to the generic method using quantitative

constraints as exemplified by GDE, but it is only useful if

normal values for all important parameters are available.

When symptoms are present, EDIS tries to generate all

possible consistent situations which can account for the

symptoms. EDIS generates "scenarios" which indicate measured

and presumed anomalous parameters and those components which are

presumed faulty. Scenarios are derived from constraint models.

Each component which lies in the casual path leading from a

correct value to an anomaly is examined. If enough data are

available, all its fundamental constraints can be verified and

the component can be judged good or faulty. In general this is

not possible.

If only one side of a fundamental constraint is known, an

inference can be made about the other quantity. If the first

quantity is normal then the second quantity must also be normal

unless the component is faulty. A conflict will arise if the

second quantity later turns out to be anomalous. This conflict

simply states that the component is faulty since one of its

fundamental constraints is violated. If, however, the first,

i.e. the known, quantity is anomalous then the component is

either faulty or the second quantity is corrupted by another
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component or both. A binary conflict between the component

being faulty and the quantity being corrupted arises.

If none of the quantities in a fundamental constraint are
known, i.e. its normative constraints cannot be evaluated

because of lack of data, propagation from neighboring components

is used to derive possible scenarios. If the neighboring

component has a binary conflict, then both possibilities are

considered and, possibly, new conflicts are created by fusing

local data with propagated data. When propagation leads to
inconsistencies the scenario is impossible.

Propagation is also used in the previous case, i.e. when

one side of a fundamental constraint is known, in order to

examine the validity of scenarios. At the end of analysis one,

several, or no scenarios may exist. If none survives our method

has failed. We do not think that this is likely, since no

particular fault behaviors are assumed. Faults only manifest
themselves as violated constraints. If exactly one scenario is

generated, it contains- the component or components which are

faulty. If several scenarios survive propagation and testing,

EDIS or the user have to make a choice. At this point specific

fault modes or behaviors may be assumed or simply the number of

faults can be minimized, or fault probabilities of components

can be utilized to discriminate between fault hypotheses.

Currently, the failure propagation mechanism is implemented

using reduced detail, i.e. only anomalies in general are

propagated instead of detailed information about size and

direction of particular parameter deviations. Conflicts are

generated by collecting all components encapsulated between two

or more correct readings which exhibit at least one anomalous

parameter value. Such a method which does not use predictive

models yields too many candidate solutions, but the correct

solution, i.e. the component which is responsible for the

anomaly, is guaranteed to be among the candidates. At this time

candidate (or hypothesis) discrimination proceeds under a single

fault assumption. Hypotheses which can explain all anomalies

are located by tracing "backwards" through the component

structure until a root cause is identified. For simplification

the algorithm assumes directional causal relations. Simple

common faults, such as turbine problems, can be found using this

technique.

4.4 Interconnectivity, Functionality, and Processes

Interconnections are determined when the component is

instantiated as part of a specific device or system. Primitive

components are grouped in categories for purposes of
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organization and to get a better understanding of the domain.

The SSME primitive components are grouped in categories in Table
3. The interconnections between the components are illustrated

graphically in Fig._ . As can be seen the SSME system is

modeled as interconnected complex and primitive components.

Functionality of a primitive component is defined in terms

of one or more fundamental processes - fundamental statements

which describe relations among primitive parameters. Parameters
describe the state of an object. For strict qualitative

modeling, parameters take on discrete values such as "high",
"medium", and "low". The current prototype of the EDIS domain

uses analytic equations to describe processes to avoid any

indeterminacy.

As described above, processes are fundamental statements

which describe relations among primitive parameters. The seven

processes currently defined in the prototype EDIS system are:

i) pGas Turbine

2) pHydraulic Turbine

3) pTurbopumps

4) pTransmit

5) pDuct

6) pValve

7) pPreburner

The simulation methodology used to derive both deviant and
normal behavior is described in Section 5.
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TABLE 3. GROUPING OF PRIMITIVE COMPONENTS INTO CATEGORIES

Gas Turbines

LPFTT

HPFTT

HPOTT

Hydraulic Turbines

LPOTT

Pumps Valves

LPFTP MFV

LPOTP MOV

HPFTP FPOV

HPOTP OPOV

CCV

Combustion Chambers

MCC

Controllers

MCON

Preburners

OPB

FPB

Nozzles

NOZ

DUCTS FLUIDS

FI01 HYI01

FI02 HYI02

FI03 HYI03

FI04 HYI04

FI05 HYI05

FI06 HYI06

FI07 HYI07

FI08 HYI08

FI09 HYI09

FII0 HYII0

FIll HYIII

O201 OX201

0202 OX202

0203 OX203

0204 OX204

0205 0X205

0207 OX207
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5. IMPLEMENTATION

5.1 Shell

At the beginning of the project several expert system shell
products were evaluated. Important selection criteria included

power of representation and inference mechanisms, ease of

creating a custom user interface, portability between various

hardware platforms, and ease of integration with existing and

future software components. Shells which contained support for

the object-oriented paradigm were preferred. The selected shell
also had to run on a personal computer. Our evaluation ranked

NEXPERT-Object first and KES second. However, due to budget
constraints we selected KES. KES provides backward chaining

rules, data driven demons, and class/member (object-oriented)

data representations. In addition we purchased a subroutine
package from Quinn-curtis (QC) which contains support for

mathematical functions and graphical data presentation. The QC

routines were integrated with KES and provide the user interface

framework. KES itself was embedded into a C main program which

manages the blackboard and dispatches the KES modules.

Embedding KES allows the system designer to develop and test

EDIS modules as stand-alone KES applications first and

subsequently integrate them into EDIS. Modules can also be

written in C, but C modules have to implement blackboard

communication explicitly.

KES is currently being updated from version 2.5 to version
3.0. The new version contains an extended window-driven

developers interface and support for relations between data

objects. Version 3.0 is available for the Hewlett-Packard
workstation and is integrated with X Windows. Version 3.0 has

not yet been released for the PC.

A listing of the "C Source Code" is contained in Appendix B

and one for the "KES Code" in Appendix C.

5.2 Computer Requirements

We are using KES 3.0 on an HP 9000/319 UNIX workstation and

KES 2.5 on a Hewlett-Packard QS 16/S personal computer based on

the Intel 80386SX microprocessor. The PC uses the DOS 3.3

operating system. KES does not require a 80386-based PC but it
is recommended. A numeric coprocessor is recommended especially

to enhance the speed of drawing graphic images. A hard disk

drive is required and we used at least 640 KBytes of main

memory. The display routines can be adapted to any graphics
interface but EGA or VGA is recommended for better results.
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5.3 File Structure

There are two C header files "comdef.h" and "ssincl.h".

"comdef.h" contains data definitions and function declarations

for blackboard communications. "ssincl.h" has to be included in

every C file to be compiled. It includes all necessary modules.

The file "ssmain.c" contains the main program, while

"bbcomm.c" implements the blackboard communication functions.
"embed.c" contains the callback interface routines for calls

from the embedded KES system. On the PC "menul.c", "menu2.c",
and "menu3.c" contain user interface routines.

On the PC the system can be compiled with the Microsoft C

compiler using a "Large" memory model and a stack size of 4000.

Linking must include ssmain (which includes header), bbcomm,

embed, the "menu?" user interface files, and the Quinn-Curtls

files segruah (an adapted version of segraph), worlddr, asyncxx,

and hpplot. Care must be taken that the include files for the

Quinn-Curtis files can be found by the linker. You may need to

use the "I" option of the linker. If you have added modules

(knowledge sources) to the system written in C these must also
be included.

KES modules must be parsed with the KES compiler. Compiled

KES modules must reside in the same directory as the executable

"ssmain.exe". The KES module "straty.kb" has to exist; it

represents the strategy module which schedules all tasks. Other

KES modules currently in use are "freadr.kb" which reads

simulated test and comparison data from files, "anomal.kb" which

detects and classifies data anomalies, and "diagn2.kb" which

attempts to find the fault causing the detected anomalies.

Figure 6 illustrates the class hierarchy used to define the

engine model. Figure 7 depicts the reasoning model of the

preliminary qualitative model.

The existence of both KES and C knowledge sources has to be

announced to the system. Enter a function call to "initKS" or
"initKSC" in the file "header.c" similar to the ones there. You

will also have to make sure that a task is scheduled which uses

the new knowledge source. To change task scheduling edit and

re-parse the "straty.kb" KES knowledge base. Make sure that the

task will correctly identify the knowledge source to use as
defined in the "header.c" file. There has to be an "EXIT" task

on the blackboard or the program will never terminate.

Data files contain configuration and test data. The file

"gconf.dat" lists the generic configuration, i.e. components and

interconnections. Data in "sconf.dat" contains the specific
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configuration, e.g. turbo machinery serial numbers. Data in

"dvarlm.dat" specify how far parameter values may deviate from

the comparison data before they are considered anomalous.
"tdata.dat" and "cdata.dat" contain simulated test and

comparison data in a format directly readable by the KES
"freadr.kb" module. On the PC, the user is prompted for these

last two file names, all other names are hard-coded in module

"freadr.kb".
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6. CASE STUDIES

During the course of this investigation interviews were

conducted with various experts on SSME engine diagnostics.

Several of these interviews are summarized in Appendix C. From

these interviews, several special cases of anomalous engine

performance were determined and the logic surrounding the

diagnosis of these problems investigated. These special cases

were then developed into a form for inclusion in EDIS.

6.1 TurbomachineryMalfunctions

Due to the importance of many turbomachinery components in

the SSME performance, turbomachinery malfunctions are a common
cause for anomalous engine behavior.

Hiqh Pressure Fuel Turbopump (HPFTP) Static Seal Leak - In

this case there is a leakage of gas past the static seal into

the hot gas manifold. This leakage causes a loss in turbine

power which, in turn, produces the following effects:

* reduction in turbopump shaft speed

* reduction in flow rate exiting turbine

* reduction in turbopump discharge pressure

The decreased flow rate is sensed by the controller which causes

the fuel preburner oxidizer valve to open. This, in turn,
increases the preburner oxidizer flow rate.

Under these conditions, the turbopump must do more work for

the same power output and the tubrine discharge temperature goes

up. If the temperature goes too high, the SSME will shut down.

Obstruction in Inlet Duct to Low Pressure Fuel Turbopump

(LPFT) Turbine - An obstruction in the inlet duct to the LPFT

turbine by some foreign object (fractured seals, fracture of

mozzle vane, glass beads, etc.) causes a loss of energy

available to the turbine. This, is turn, results in decreased

turbine power and subsequently a:

* reduction in LPFTP shaft speed

* reduction in pump output flow rate

* reduction in pump discharge pressure

The controller senses the increased HPFTP demand and increases

the fuel preburner oxidizer flow. The HPFTP can possibly

cavitate causing excessive turbine discharge temperatures.

Power Loss in LPFTP Due to Fracture of Stator Vane - As

before, a loss of LPFTP turbine power causes a:
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* reduction in pump shaft speed

* reduction in pump output flow

* reduction in pump discharge pressure

The controller senses the increased HPFTP demand and increases

the fuel preburner oxidizer flow. In the event of cavitation,

turbine discharge temperature increases.

6.2 Fuel and Oxidizer Leaks

Another common

fuel and oxidizer

chambers.

source of anomalous SSME firing data are

leaks in ducts, manifolds, and cooling

Fuel Leak in the MCC - A drop in the MCC coolant discharge

pressure suggests a possiable anomaly. A check in the coolant
discharge temperature reveals a concurrent drop suggesting a

decreased resistance and increased flow rate through the MCC.

The LPFT speed is lower than normal due to the decreased MCC

discharged pressure. The MCC coolant flow rate reveals an
increased value. These parameters suggest a leak in the MCC

coolant tubes.

These anomalies have been investigated and converted into a

form for inclusion into EDIS. They are only preliminary and

represent the manner in which EDIS will perform diagnoses.
Other anomalies and reasoning will be added to EDIS to make it

more comprehensive.
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7. DISCUSSION

We have developed an architecture and a qualitative

reasoning mechanism for reviewing SSME test data and diagnosing
SSME faults based on data anomalies. The modular architecture

developed for EDIS facilitates modular software development and

coordination of different reasoning paradigms. The fault

diagnosis methodology presented combines high degrees of fault

coverage, domain generality, and domain knowledge. Fault

coverage is achieved through constraint-based behavior models

and avoidance of fault assumptions. Domain generality is

derived from using generic component models and separate

connectivity descriptions. Domain knowledge is represented by

the component models. Additionally, expert experience is stored

in heuristic rules. EDIS incorporates and coordinates reasoning

based on heuristic expert knowledge, qualitative models, and
quantitative models.

Relation to Other Work - The architecture of EDIS is a

variant of the now widely used "blackboard" architecture which

was made famous by the HEARSAY project [35]. The blackboard

architecture facilitates incremental system development,

controlled module interaction, and explicit storage of data and

inference results. The reasoning architecture used by EDIS

combines qualitative and quantitative reasoning at the

hypotheses level which affords more seamless integration than

was possible before.

Relevant comparable approaches to diagnosing engineering

devices have been introduced and discussed at the beginning of

this report. EDIS uses a constraint-based representation for

device behavior similar to the one proposed by Davis [13] but
adopts a qualitative formulation for the constraints as

introduced by de Kleer [24]. EDIS works with models of correct

behavior only which has been publicized by Davis and de Kleer

(GDE) [20]. We had to adapt the reasoning mechanisms of GDE for

the SSME where component models are too weak to propagate values

unambiguously. Also, EDIS can reason about possible scenarios

based on incomplete information while GDE is silent when no more

data can be acquired. EDIS does not resort to pure trial an

error constraint suspension but uses constraints on parameters

as guidance.

Hudlicka and Lessor [36] have developed a problem-solving

system for simulating and diagnosing aircraft behavior which

also incorporates and integrates qualitative and quantitative

reasoning into a causal model of a complex dynamic system.

Their system requires an explicit causal model which defines

influences of components on forces and of forces on flight

characteristics. The causal model is valid for a specific
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configuration. EDIS attempts to reason from component models

and interconnectivity information. EDIS can easily be adapted

to changes in configuration. The option of creating an explicit

causal model from the component and constraint-based model to

facilitate diagnosis later may be explored in the future. Their

causal model is directional and contains no feedback or cycles

and does not describe component behavior by itself as compared

to component constraints in EDIS. Their quantitative model,
like EDIS, uses simplified linearized equations which are

defined for a number of operating conditions. Diagnosis does not
start at the detailed level of sensor anomalies used in EDIS but

when an alarm at system level is received from a separate

diagnostic system. The problem of dealing with multiple faults

is therefore simplified because individual fault notices are

assumed to be received. In short, the approach taken by EDIS

appears to model systems at a deeper level.

Sussman and Steele have developed a general framework for

reasoning with non-directional constraints [37]. Their approach

uses "equivalence slices" to represent several different views

of one set of components and avoids solving simultaneous

symbolic equations. Each view contributes different pieces of

the final analysis. A slice can also represent concisely the

behavior of several components and thus support hierarchical

composition. CONSTRAINTS manipulates exact numeric constraints

in contrast to EDIS. CONSTRAINTS is based on EL developed by

Stallman and Sussman [38] which introduced the method of

"propagation of constraints" to analyze electrical circuits. EL

dealt with components which display different behaviors in

different states by assuming states and retracting inferences

when an assumed state lead to an inconsistency. EL retains

dependency information to identify the inferences to retract.

EDIS must find all possible situations, i.e. all possible

combinations of component states, which are consistent with the

data. EDIS uses dependency information not to retract facts but

to assign blame to faulty components.

De Kleer applied constraint-based reasoning to qualitative

analysis of physical systems, in particular to electric circuits

[39]. In his EQUAL, system component behavior is expressed by

qualitative equations called "confluences". EQUAL, like EDIS,

reasons about incremental changes from steady-state operating

points. The EDIS constraint "A p B" is completely equivalent to
de Kleer's formulation "dA = dB". Both constraints indicate

that an increase (or decrease) in A will lead to an increase (or

decrease) in B. EDIS is limited to first order constraints

while de Kleer's qualitative calculus includes higher order

derivatives. EDIS does not mention steady-state constraints

because it assumes equilibrium unless otherwise indicated.
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EDIS captures causality in terms of function instead of

behavior, cmp. EQUAL. Functional causality leads to the
distinction between fundamental and normative constraints. The

primary function of a component gives rise to fundamental

constraints which are only violated in case of a component

fault, i.e. when component function is compromised. Given a

fundamental constraint, the constrained quantities can be

related to measurable quantities using normative constraints and

auxiliary relations. Normative constraints in this sense
"cause" normative constraints. Functional causality is

non-directional within constraints, however. For example, the

primary function of a pump is the conversion of mechanical

energy into fluid energy. A fundamental constraint of the pump

model expresses energy conservation across this conversion.

Mechanical power is characterized via torque and radial

velocity; fluid power is characterized by fluid energy (and thus

pressure difference) and fluid velocity. The normative

constraint that torque is inversely proportional to radial

velocity is caused by the fundamental constraint which forces

their product to be constant.

De Kleer also shows how teleological analysis can lead to

an understanding of the function of individual components with

respect to the complete device. EDIS incorporates some causal

information by virtue of the arrangement of constraints and

pseudo-constants and thus falls in between GDE, which ignores
causality, and EQUAL, which explicitly models causality.
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REPORT (NAS8-36955, D.O. 58)

December 14, 1989

by
Martin Hofmann

Thomas Cost

UAH

Current Understanding of the Review and Diagnosis Process

This report documents the current status of the EDIS project.

Events:

Mike Whitley and Gary Lyles were unavailable for two weeks in

December but Mike Whitley arranged a meeting with SSME data

review experts for us and has left us some documentation. On

Dec. 8 we were able to meet with Marc Neely and Lewis Maddox to

discuss the basics of the data review process. We were also

introduced to Bruce Boulanger and ??? from Martin Marietta who

support the numeric SSME performance predication and data

reduction models. We will meet with them again to learn more

about the numeric SSME models and how they are used in the data

review and diagnosis task.

Tasks:

We have made progress in all three aspects of the Project

Assessment Task as defined in the Study Orientation Meeting

Document of November 2, 1989. (1) The review of applicable

literature is continuing; a partial bibliography is attached.

(2) SSME propulsion modeling is being addressed in the context of

the Power Balance Model and the Digital Transient Model. (3) The

engine diagnosis task was described to us by Marc Neely and we

have studied documentation provided by Mike and Bruce.

The following is a summary of our current understanding of the

data review and diagnostic processes. We will point out where we

still lack information, and where we see potential for a

successful expert system application. We would appreciate any

corrections or improvements you can suggest for us to

incorporate. In our next session with Marc we will try to

identify those faults and symptoms which we will incorporate into

the prototype system. We will study the knowledge which he

applies specifically in solving the chosen problems and we will

determine the tools and mechanisms our system will have to employ

to mimic his reasoning process.

I. Literature review: a partial bibliography is attached.

2. Propulsion System Modeling:

Documents reviewed:

"SSME Model Analysis Procedure for Ground Test Data

Review Support".

"Procedure for Implementing the Power Balance".

"Engine and Pump Performance Calculations Used in

TIP87B_" by J. Taylor Hooper.
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"SSME PHASE II Power Balance Average Database,,, Memo

3912-P/I0-89 by B. Boulanger, Jan. 19, 1989.

"RSS-8598-I" describing the Space Shuttle Main Engine
Performance Prediction and Data Reduction Model and its

usage.

"Space Shuttle Main Engine", Part Number RS007001, SSME

Description and Operation, by Rocketdyne, E41000, RSS-
8559-1-I-1, Sept. i, 1983.

3. Engine Diagnosis

Data review is based on knowledge of engine configuration,

modulation of the control inputs as scheduled for the test,
expected data, and measured actual data. Diagnosis is based on
knowledge of how the engine works (in normal and fault

situations), how the engine is controlled, and what behavior to
expect. Data are analyzed mostly qualitatively and

comparatively. Absolute values are less important except when
absolute limits are exceeded (e.g. as defined in the interface
control document). For example, the DTM returns only relative

data. Fault detection is triggered by unexpected levels
(relative to the expected levels) of parameters and by phenomena
in the data, e.g. steps, spikes, undershoot, overshoot, etc.

Data are inspected first for the whole phase and, if a problem is
suspected, in more detail, i.e. a data segment is enlarged.

Comparison data:

Digital data are analyzed in three segments: startup, main stage,

and shutdown. For each phase comparison data are prepared in
advance. Comparison material is derived from several sources.

Note: even the control of the engine is fairly constant, e.g.
valve openings, etc. However, the test objectives may require

changes. In one example, it appeared as if the expert at first
treated an observed deviation as a possible problem and he
explained it suDsequently as being the result of non-standard

control as required by a test objective. Thus, instead of
generating new specific reference curves for this particular

test, a nominal reference was used and expectations for
differences were created mentally. Differences can be predicted
as relative changes, reference curves would have to be absolute
values.

a) 2 sigma limits compiled from all previous tests.

b) Data from (one or two) previous tests with a

similarly configured engine and similar test
objectives.

c) Absolute (static or generic) limits from the
interface control document.

d) Known changes to the engine configuration.

e) Test objectives.
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f) PBM predictions (?)

The above mentioned sources define expectations for the actual
data and for normal, possible deviations from the expected data.

When deviations are observed they may be explained as normal

engine variations, effects of wear, effects of replacing

components, effects of other engine changes, effects of changed
engine control, effects of changed instrumentation, or faults.
Faults can be instrumentation faults, data faults, and engine
faults.

Fault verification:

If a fault is suspected three hypotheses are tested in order:

i) incorrect sensor readings

ii) incorrect data processing

iii) engine faults

i) Sensor problems can be identified through inspection of raw

sensor data. Often sensors are redundantly implemented and can
be checked directly against each other. Other times data
validity can be checked through dependent data at related

sensors. Sometimes instrumentation experts can help to identify
or rule out sensor fault modes and fault possibilities, e.g.

some sensors cannot read negative values. (We will need more
detailed information on types, location, and operation of

sensors.) Also, there may be known sensor problems which can
explain differences between data. Sensor problems may exist in

comparison or test data.

ii) For now we assume correct processing.

iii) Diagnosis of the engine is necessary, see below.

Enqine diaqnosis:

Starting from a data anomaly the faulty behavior of the engine is
reconstructed. Then the cause of the faulty behavior has to be

determined. Faulty behavior can be explained from a qualitative
understanding/simulation of the corresponding engine parts.

Causes for faulty behavior are hypothesized by the expert (based
on experience?). Hypotheses are tested with the help of numeric
models. For example, the DTM can verify an incomplete ignition

hypothesis. Note: "incomplete ignition" may be the cause for
some data anomalies but it represents faulty behavior and not a

satisfactory diagnosis. However, it is not directly observable
and "closer" to a physical or functional cause. Numerical models
ONLY simulate behaviors and behavior interaction; an expert has

to postulate the underlying defect(s). Therefore, fault
hypotheses have to be characterized by fault models for the
responsible component. Fault models translate faults into fault
behavior. We are told that sometimes no unambiguous explanation
for a fault behavior can be found.

In some cases analog data will be requested from the analog data
review to gain more information about engine behavior in a given
interval where a problem is suspected. Analog data can identify
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imbalance in rotors and ball wear, for example. Also, some data

are available from test stand instrumentation, e.g. total fuel

and LOX flows.

E_n_qine decomposition into subsystems:

In some situations the behavior of only parts of the engine have

to be considered, for example each turbopump, the fuel and the

LOX systems.

Qualitative model

The expert uses a mental qualitative model of the structure and

function of engine components and controllers to predict

behavior. The expert can derive the effects of deviations of one

parameter on other parameters in qualitative terms. Controllers

will often mask faults by compensating for their effects.

Sometimes resulting transients can be observed in the data, other

times the controllers act too fast. In feedback situations we

can look for separate additional effects of members of the

feedback loop. If qualitative simulation cannot identify the

cause of a problem, it will at least identify all the involved

processes. The expert can then select the most likely ones. Of

course, causal relations could be derived which store the fault

propagation paths generated by the qualitative reasoning process.

Some important aspects of SSME operation:

Preburner operating levels are closed-loop controlled via

oxidizer flow rates through modulation of the preburner oxidizer

valves.

The main oxidizer valve, main fuel valve, and chamber coolant

valve are scheduled as function of the commanded thrust.

The main oxidizer valve and the fuel preburner oxidizer valves

are modulated to maintain engine thrust and mixture ration during

steady state.

Problems:

Diagnosis is performed with the help of several cooperating human

experts, i.e. digital data expert, analog data expert,

instrumentation expert, numeric model expert. We will

concentrate on diagnosis using digital data.

Data show strong random variation and instrument resolution is

limited.

Comparison of test data segments against reference data seems

more important than assumed. It may be necessary to supply

numerical data comparison algorithms (in addition to current

preprocessing). In the short term we will work with
characterizations of the data, e.g. "data show a step at time t",

" data show 3% undershoot during time interval tl-t2", or data

deviate from reference by I0% in time interval tl-t2". The user

will be prompted to perform manual/visual validation by

inspecting other, related data curves.

Additional information needed:
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Documentation on SSME instrumentation.

When are which numerical models run?

How is the data base of prior failures used?

Examples of in-run versus between-run problems.

Possibly some case records of diagnosed faults.

Possibly training material for novice data review

personnel.

Qualitative reasoning about the behavior of the SSME as

performed by the human expert, e.g. effects of fuel
leaks. More detail than what has been observed is

needed.

A closer look at the diagnosis process, best in the
context of some relevant fault.

Direct access to the case data base and numeric models.

How important-is it to directly access data? Should

the system simply ask the user to do that manually?

Computer networking: can a PC communicate with the IBM
mainframe?

Possible Expert System support:

* Selection of reference material, similar to

intelligent data base management.

* Generation of inputs and parameters for numerical
models.

* Comparison of data: detection of limit violations. In

the first phase of this project it may be too

complicated to detect more subtle phenomena in the
data.

* Qualitative simulation of SSME behavior with user
defined aberrations in the data.

* Fault hypothesis generation from observed faulty
behavior, based on causal, functional, and structural

interdependencies. Assistance in verification,

testing, and discrimination of hypotheses.

A-6



BIBLIOGRAPHY

Thomas L. Adams, Gregory L. Orr, Carl J. Tollander, "An

Artificial Intelligence Approach to coordinated Fault Diagnosis,

Control, and Planning for the Space Station Electrical Power

System," Proc. AIAA Space Systems Technology Conference, San

Diego, CA, June 1986, pp. i-i0.

D. G. Bobrow, (ed.), Qualitative Reasoninq about Physical

Systems. Cambridge, MA: MIT Press, 1985.

T. Bylander, "A Critique of Qualitative Simulation from a

Consolidation Viewpoint," IEEE Trans. Syst. Ma___nnCybern., Vol. 18,

No. 2, pp. 252-263, Mar./Apr. 1988.

Randall Davis, "Diagnostic Reasoning Based on Structure and

Behavior," Artificial Intelligence, Vol. 24, No. 1-3, Dec. 1984,

pp. 347-410.

Randall Davis, W. Hamscher, "Model-based Reasoning:

Troubleshooting," in Shrobe, E.H., (ed.), Exploring Artificial

Intelligence, Morgan Kaufmann, california, 1988, pp. 297-346.

Pamela Fink, "Control and Integration of Diverse Knowledge in a

Diagnostic Expert System," Proc. IJCAI-85, pp. 426-431, 1985.

K. D. Forbus, "Qualitative Process Theory," Artificial

Intelligence, Vol. 24, No. 1-3, pp. 85-168, Dec. 1984.

Genesereth, M.R., "The Use of Design Descriptions in Automated

Diagnosis," Artificial Intelliqence, vol. 24, no. 1-3, Dec. 1984,

pp. 411-436.

Hofmann, M., Caviedes, J., Bourne, J., Beale, G., Brodersen, A.,

"Building Expert Systems for Repair Domains," Expert Systems,

Vol. 3, No. i, 1986, pp. 4-12.

T. L. Laffey, W. A. Perkins, T. A. Nguyen, "Reasoning about Fault

Diagnosis with LES," IEEE-Expert, Vol. i, No. i, pp. 13-20,
Spring 1986.

Leinweber, D., "Expert Systems in Space," IEEE Ex___, Vol. 2, •

No. i, Spring 1987, pp. 26-36.

Jane T. Malin, Nick Lance, "Processes in Construction of Failure

Management Expert Systems from Device Design Information," IEEE

Trans. SMC, Vol. SMC-17, No. 6, Nov./Dec. 1987, pp. 956-967.

R. Milne, "Fault Diagnosis through Responsibilitiy," Proc.

IJCAI-85, pp. 423-425, 1985.

Narayanan, N.H., Viswanadham, N., "A Methodology for Knowledge

Acquisition and Reasoning in Failure Analysis of Systems," IEEE

Transactions o__n Systems, Ma__nn,and Cybernetics, Vol. SMC-17, No.

2, 1987, pp. 274-288.

Klaus W. Pflueger, "Hybrid Diagnostic Strategy for an Expert

System Controlled Automatic Test System (EXATS)", IEEE AES

Magazine, Vol. 4, No. 10, October 1989, pp. 25-30.

A-7



Vezina, J.M., Sterling, L., "A CLIPS Prototype for Autonomous

Power System Control," Proc. Fourth Conf. Artificial Intelligence

for Space ApDlications, Huntsville, AL, Nov. 1988, pp. 211-220.

Wang, C., Zeanah, H., Andersen, A., Patrick, C., "Automatic
Detection of Electric Power Troubles," NASA Technical Memorandum

TM-86593, Marshall Space Flight Center, AL, 1987.

Wang, C., Zeanah, H., Anderson, A., Patrick, C., Brady, M., Ford,

D., "Automatic Detection of Electric Power Troubles," Proc.

Fourth Conf. Artificial Intelligence for _ Applications,

Huntsville, AL, Nov. 1988, pp. 125-130.

Weeks, D.J., "Artificial Intelligence Approaches in Space Power

Systems Automation at Marshall Space Flight Center," Proc. First

Internat. Conf. Industrial & Engineering Applications of

Artificial Intelligence & Expert Systems (I__AIE-88), Tullahoma,

TN, June 1988, pp.361-366.

A-8
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by
Martin Hofmann

Thomas Cost

UAH

Support of the Data Review Process Provided by Numeric Engine Models

Events:

On January 17, 1990 Tom Cost and Martin Hofmann met with Bruce

Boulanger and Brian Piekarski from Martin Marietta, who maintain

the numeric SSME performance predication and data reduction

models. We learned what types of analysis they perform in

support of the data review process.

Knowledge Gathered:

Martin Marietta: There are two groups from Martin Marietta

involved in the engine tests. One inspects raw measured data,

compares these data with data from the previous test (like Marc

etal.), and archives the data in a data base. An anomalies data

base is kept for raw measured data.

The other group (Bruce & Brian) uses averaged data (from 50

samples per second to one-second averages) for steady-state data

sections. Transients are ignored. The PBM, too, works with l-

second average data. 1-second average data are kept in a data

base on the IBM. (B&B are supervised by John Butas from NASA.)

NASA itself (Chris Singer?) maintains a data base of test data
from which mean and standard deviation values are derived, i.e.

the "2-sigma" limits. While B&B work on the IBM, the 2-sigma

data are kept on the Perkin-Elmer. The IBM can be accessed via a

modem and KERMIT from a PC.

Use of Models: The engine models (mainly the PBM, also the DTM)

are used for two main purposes, a) Engine performance

evaluation: The group from Martin Marietta provides a second

opinion versus Rocketdyne's evaluation of engine performance
after each test. b) Support for the data review process as

performed by Marc Neely etal., i.e. on a system level. (It

appears that Marc etc., besides evaluating the digital data, also
coordinate the evaluation of test data by specialists, e.g.

numeric model specialists, turbo machinery experts, sensor

experts, analog data specialists, etc.)

a) Engine performance evaluation: The main goal is to verify

that the engine hardware is performing adequately. The hardware

is either being readied for flight or new designs are tested. The

PBM is run in the "data reduction mode". Results are presented

in comparison with 3 or 4 previous tests. For example, a flow

rate at 104% power at steady-state is plotted versus previous

test results. Some data patterns indicate problems. For

example, a steady decline in flow rate may indicate a leak, or

degraded trust may indicate loss of comDustion efficiency,

measurement problems, or may reflect hardware changes.

Engine components are evaluated separately (mostly pumps) via
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efficiency factors. Efficiency factors are calculated by varying

component parameters until the model predictions approximate the

measured data. Efficiency factors are used to characterize

hardware components. Both individual low efficiency as well as

disparate efficiencies of fuel and LOX pumps can lead to engine

problems. Excessively low efficiency will manifest itself in

other measured parameters, e.g. high pump discharge temps, so

than model-based analysis is not always necessary. For

subsequent tests the calculated efficiency factors will be used

to predict overall engine performance. Since pumps are

interchangeable individual performance histories are kept for
them.

b) Data Review Support: Generally no pretest predictions are made

except for actual flights, but sometimes KF and C2 factors are

estimated based on the last test. KF and C2 calibrate fuel flow

and mixture ratio measurements. The model can be used to test

fault hypotheses for leaks and flow resistances. The model can
simulate leaks and increased flow resistance and its results will

be interpreted as deviations (or "deltas") from the nominal

parameters. The deltas will be indicated in a schematic of the

engine configurations. Also, plots of nominal parameter values

versus anomalous values for various power levels may be produced.

Main Model Parameters:

INPUT:

LOX flow rate \ from facility meters

fuel flow rate /

calculated thrust

ISP chart (specific impulse: thrust/flow rate)
nominal mixture ratio

OUTPUT:

High pressure (HP) turbine discharge temps (2)

HP turbine pressures (2)

HP pump fuel inlet pressure (i)

LP fuel turbine inlet temp (i)

preburner chamber pressures (2)

HP oxidizer pump suction specific speed (i)

Tasks Performed:

We have completed the project assessment phase and are starting

the project specification phase.

Possible additional benefits from an expert system:

The expert system could exercise the numeric models in support of

Marc Neely et al. in standard situations without intervention by

Martin Marietta personnel. This would permit better integration

and speedier execution of the review process. The expert system

would thus capture expertise necessary to run the numeric engine
models.
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#include"ssincl.h"

int i,j,k,l;
intsuccess;

longintv tiu = O;

classptrblackboard= NULL;
int bb size= O;

mel_er_ptrfirst_task;

umber2tr current_task;

meEer_ptrte__mem;

attx2trte__attr;

attr2tr *app;
KLS_commend_tyl_com_nd_type;
l(/.S_atl_ibute_typetemp_l(E__attr;

KES_a__seg_ty_te__KES_atix_s_;

KES_class_typetemp_KES_class,temp_l_S_class2;
K__member_tl_ete__l(/.S_mem;
l(ES_value_typetemp_KES_value;
l(__class_value_type temp_KES_cv;
int (*fct_ptr)();

/* virtual time */
/* define the unique blackboard */
/* numberof classes on the blackboard */
/* bead ptr for task list */

#ifdef
char

#endif

main()

( intmaLgrio,nunattrs;

char*t_name,file_name[LINE_LENG_],temp_str_arr[LIN__LENGTS];
MSDOS

temp33[LINELENGTH];

char *KS_name,*Ks_fct,*Ks_dir,*C_name,*temp_stz,*class_name;

char*attr_name,*mem_name,*te_str2;

charKS_io_Iist[LII/E_L_GTH],t_string[LIl__I_/GTB];

member_gtrt_mem;

attrvalt)_et_aval;

currenttask: NULL;

firstt_sk: NULL;

initialize(&blackboard);

#ifdefJSDOS

initializeviers();
#endif

/* basic loop = task dispatcber */
/* THIS FII_ST_OHTHEBB! */
for (;;){
/* findtaskon I_ withhighestpriority*/

firsttask: bb_findmem(blackboard,"TASI{");/*get firsttask*/

currenttask: first_task;

max_pri_: atoi(findattr_sval(current_task,"priority"));
currenttask: currenttask->fwd;

while([_renttask!:-I_LL){
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temp_attr: find_attr(current_task->attributes,"priority");

if (aax_prio< atoi(te=p_attr->attrvalue.sval))(
firsttask= currenttask;

lax_prio= atoi(te=p_attr->attrvalue.sval);

)
currenttask= currenttask->fwd;

};
/*now firsttask_Ids the taskwithhighestpriority*/

/* assumet_re alvasis one:thereshouldalwaysbe a

taskto runthe strategistlefton the_. To exit

use an explicitEXITtask! */

I*CheckforEXITtask,/

t name: find_attr_sval(firsttask,"taskname");

if (strcw(t_nam,"EXIT")== O) {

clean_up();
exit(O);/**************PI_Alq EXIT*************************

!;

/* otherwisedo task:retrieveKS */

/*ForKEStask:KS_load,BS_read,KS_execute,I__vrite,KS_unload*/

/* ForC program:runprogramwithparamterpointer.*/

/* retrievingthe KS andtaskname*/

v time++;

KS_name= find_attr_sval(firsttask,"knowledgesource");

KS fct = find_attr_sval(first_task,"taskname");

te__mem= find_me1(bb_find_mem(blackboard,"KS"),KS_name);

if (strc_(findattr_sval(te___,"KSkind"),"KES")== O) {

/* KE_k_owledgesource*/
strcpy(file_nam,find_attr_sval(tew_mm,"exec filename"));

strcat(filenam,ErfZltS);

|ifdefI_-UX

printf("ExecutingKES tasklsusingfile%s.\n",t_nam, filename);
|endif

|ifdefE_OS

sprintf(te=p33,"ExecutingKEStaskts usingfilets.\n",t_nem, file_name);

init_message_vindow();

displaLas_mssage(tew33);
#endif

/* KS load */
if (KESld_kb(file_name, 60000L) !: __success_c)/* (1 !: 1)*/ (

printf("Cannotloadl_ filets.\n",file_name);

)
else{

/* BSread */

/* testputs("I_read.");*/

strcpy(KS_io_list,find_attr_sval(temp_me=,"IN"));

te__str= KS_io_list;

while((temp_str= strtok(te|p_str," ,"))!=l_LL)(
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/* now assertall members*/
t mem= bb_find_mem(blackboard,temp_str);

while(t_memI=_I,I){
cla_ name= t m|->classnam;

/* ex_te colman_like:-reassertclasscla_ = class+ mel_)er*/

tew KKS class= KES_g_named_class(class_nale);

K_garse_members(te__KES_class, t_mem->member_,aN,
KES_false_c,&tew_KSS_cv);

IL_S_reassertclass(tew_I(ES_class,Kr__true_c,
KES_nu11_classvalue_c,temp___cv);

#ifdefI[P-UX

/*test*/ puts(reassertclass_co|_gen(class_name,t_meP>mmber_name));

#endif
|ifdef_IDS

/* test*/ display_as_iw_age(rea_rtclass_c_|_gen(cla__mam,t_melr->mel__name));
#endif

te__attr= t mem->attxibutes;
while(te__attxI=fluff,){

temp_KKS_attr= KF_S_g_na|L_d_atr(te__KLS_cla_,te__attr->at__mam);

te__](_.Sme| = KES_g_na|L_d_meld)er(te__KES_class,t_m|->_iLber_nal_);
KLS_l)arse_value(te___|,telq)_KKS_attr,te__attr->at__val_.sval,

_te__KKS_value);

KES_reassert(temp_KES_mem,tempKES_attr,te__I(KS_value);

te__attr= te__attr->fwd;

);
t mem = t mem->fwd;

);
temp_str= _LL; /* getreadyfornextcallto strtok*/

);
/* KS executeetc.*/

KS dir= find_attr_sva1(te__mem,"inferencedirection");

if-(str_(KS_dir,"forward")==O) {

|ifdef_-OX

/*test*/ puts(reasse__glob_co|_gen(find_attx_s_al(telq)_l_|,
"flmc-tion"),"true"));

#endif

#ifdefXSIX)S

/*test*/ display_as_l_'_ge(reassert_glob_co|_gen(find_attr_sval(teml)_l_|,
"f_m_ion"),"true"));

|endif

te__l(KS_at_= l(F.S_g_mal__atr(I(ES_glo_l_cla__c,
find_at__sval(te__Im,

"f_mctio,"));

_Y.S_])al__value(l{ES_global_Im_er_c,te__KES_attr,"true",

&te|p_K_.S_value);

KES_reassert(l(KS_global__|_ber_c,te__l(ES_attr,te__KKS_value);

}
else{
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#ifdefHP-UX

/* test*/ puts(obtain_co|gen(fi__attr_sval(te_me|,"function")l);
#endif

/ifdef I(SDOS

/*test*/ display_as_message(obtain_com_gen(find_attr_sval(tenp_mem."function")));
#endif

KES_obtain_atr(KES_global_maber_c,

KES_g_named_atr(KESglobal_class_c,

findattrsval(te__me|,"function")

I);

>;

I*_ write*I

str_y(__io_list,find_attr_sval(te__mem,"_"));
classname= KS io list;

/* forallclasseson theO(?flist*/

vhile((class_name= strtok(class_name," ,"))!:M_L) {

/*prepareaccessto attributes(usinglevel3) */

telpKESclass= ZESg_namedclass(class_name);

/*nowstepthroughallclassmembers*/

for (temp_ZES_nem= KES_g_nextmetber(tew_KES_class,

KES_nu11mnber_c);

teup_KES_meu!=KESnullmember_c;

teup_l(ES_mem= KES_g_nextmember(tew_ZES_class,

texp_ZES_nem)){

/* createa newC member*/

t mem= ne__mtber();
strcpy(tmem->snbername,

KZS_g_mem_er_name(temp_I(ES_mem));
t mem->attributes= NI]LL;

t mem->nattr= O;

- strcpy(t_tu->class_name,

KES_gclassname(ZES_g_menber_class(tew_ZES_mm)));

/* thespecificclass(nota superclass)*/

teup_KgSclass2= KES_gnamedclass(t meu->class_name);

telpKES attrseq = KESg_atrs(tenpKZSclass2);

nun attrs= KES g_nuu_atrs(tew_Z_S_attrseq);
/*retrieveasdadd theattributes*/

for (i = I; i <=.,l attrs;++i){

te__l{IS_attr= KES_gntbatr(tewI(_Sattrseq,i);

attrham = ZESgatrname(tespKESattr);

if (KRSgatr_status(tesp_KESms,tempKF.%attr)

== l_S_Imown_c){

teNp_str= l__d_value(te__I(_S_met,te__I_ attr);

/* parse the value string! (get only firstvalue!) */
/*throwaway_i_ aftera '<"cheats: this

should be the certainty factor of the first value */

strcpy(temp_str_arr, telp_str);
I : strcspn(teup_str_arr,"<");

te__str_arr[l]: '\0';
while((isalntm(tenp_str_arr[strlen(tesp_str_arr)-l])== O)
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&& (strlen(telp_str_arr)>0)) (

telp_str_arr[strlen(telp_str_arr)- i] = '\0';);

:_hile((isalnul(te__str_arr[O])== O)

&& (strlen(te__str_arr)> 0)) {

strcpy(t_string,te__str_arr+l);

stz_y(te__str_arr,t_stzing););

temp_str= temp_str_arr;
/*nowaddthe attribute*/

add_attz(&(tmem->at_ibutes),attrname,te__s_);

(t_mm->n_at_)++;

);
);
/* finallyinserton !_ */

bb_insert(&blackJ)oard,class_name,t_lem);

);
classname= NITLL;

);
/*KS unload*/

KZS_free_kb();
#ifdef_DOS

ClearWindow();

#endif

)
}
else{
/* C program*/ /*In header.c:definethe C functionas a KS */

/* C programscan manipulatetheblackboarddirectly.They

arerespo_ibleforkeepingit incorrectformat*/

printf("EzecutingC task%s.\n",t_name);

fct_ptr: find_attr__(te__mem, "executablefumctionM);

success = (*fct_ptr)();

i;
/* resettaskpriorityto 0 and setattr"doneat"to current"<time>"*/

temp_attr= find_attr(first_task->attributes,"priority");

str_y(temp_attr->attr_value.sval,"0");
if ((temp_attr= fimd_attr(first_task->attributee,"doneat"J)== _LL) (

add_attr(&(first_task->attributes),"doneat",time_pen());

)
else( /*changetimeof lastexecution*/

strcpy(temp_attr->attr_valne.sval,time_pen());

)
);

);

/* initialization:foreach_owle._gesourceadda memberto

the_ovl_ sourceclassonthe blackboard;then
createa taskto run thestrategist*/

B-6
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voidinitialize(bbp)bbptr bbp;{

char c_t_p[_IN_];
intsuccess;

/* addknovledgesourcesto BB: includea filewithcallsto initZS */

#include "beacler.c"

/*createtaskto runstrategist*/

temp_mem: hey_member();

strcpy(temp_mem->mmbername,name_gen("task"));

temp_mem->n_attr: 4;

temp_mem->attributes: _LL;

strcpy(tempmem->class_name,"TASK");

/* createattributes*/

/* attrs:task_name: "find_task",KS : "strategistw, time= <nov>.

Thus: there mstbe a knowledge source on the i_vitb name
strategist;it mustbarea function"find_task";and tlm

mustbe eitheran executableC programor a parsedknovledge

base. */
sprintf(c_tmp,"ti",v_time);/* virtualtimeas charstring*/

app : &(tewmem->attributes);

add_attr(app,"time",c_t_);

add_attr(app,"priority","100");

add_att_(app,"taskham", "findtask");

add_at_(app,"knowledgesource_, "strategist");

/* put it on the blackboard */
success: bbinsert(bbp, "TASK",tewnem);
svitcb(success){

case-i: printf("Cannotinitializetlmblackboard!\n");exit(-l);

break;

default:printf(Wlnitializedtlmblackboard.\n");
break;

/* Supplytlm tilenamesforthe configurationfiles*/
/* Thiscouldbe doneina separatetaskusinguserconfirmation/changes*/

temp_mem= _w_member();

strcpy(tew_mn->mnbernane, name_gen("file"));

temp_mem->n_attr= 3;

tem__nem->attributes= I(Vtl;

strcpy(temp_mm->class_name,"FIl,V.");

/* createattributes*/
app : &(telp_ae_>attribtrtes);
add_attr(app, "llam", "sconf.dat");
add_attr(app, "Type", "specific confiquration");
add_attr(app, "ComparisonType", "none");
/* put it on theblackboard*/
success = bbinsert(&blackboard, "FILE", te__mm);
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te__mem= new_melber();

str_y(te__mea->me_er_name,name_gen("file"));

te__mem->n_attr= 3;

te_mem->attributes= _LL;

strq)y(te_men->class_name,"FILE");
/*createattributes*/

app= &(te__mem->attributes);

add_attr(app,"Name","dvarlm.dat");

add_attr(app,"Type","variationlimits");

add_attr(app,"ComparisonType","none");

/*put it on theblackboard*/

success= bb_insert(&blackboard,"FILEr, temp_nem);

temp_mem= hey_member();
strcpy(temp_mem->member_name,name_gen("file"));

temp_mem->nattr: 3;

tempmem->attributes: NULL;

str@y(temp_mem->classnaae,"FILEr);_
/*createattributes*/

app : &(temp_mem_>attributes);

add attr(app,"Name","gco_.dat");

add_attr(app,"Type","generalconfiguration");

add_attr(app,"ComparisonType","none");

/*put it on theblackboard*/

success= bb_insert(&blackboard,"FILEr,temp_mem);

};

/* auxiliary functions */

*************************

/*namegengeneratesa uniquenamederivedfroma supplied
stringandthevirtualtime.

*/

char*namegen(stem)
char *stem; {

staticchartW[NAXIIAX];
staticlonginttag;

sprintf(tw,"Istin,stem,tag++);

returnimp;

};

/*time_gengeneratesa stringrepresntationfromtheglobalintegertime*/

char*timegen(){

staticchartmp[MAXl(AX];

sprintf{tmp,"li",v_time);

returntmp;

);
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void init_Ks(bbp,name,fct,dir,exec,kind, in,out)

bb_ptrbbp;char*name,*fct,*dir,*exec,*kind,*in,*out;(

tamp_me|= newmember();

strcpy(te_p_me|->member_name,name);

temp_mem->n_attr= 6;

telp_mem->attributes= MULL;

strcpy(temp_mem->class_nam,"KS");

app= &(temp_mem->attributes);

add_attr(app,"function",fct);

/* "function"and"inferencedirection"sl_ify I_ totun
a KF.qmodule:ifdir_ion=for_ardthen'assertfunction=true';

ifdirection-backwardthen'obtainfunction'.

*/

/*onlyone functionperKS atthispoint*/

add_attr(app,"inferencedirection",dir)p

add_attr(app,"ex_ filenan", ex_);

add_attr(app,"KSkind",kind);

/* Nowdefinewhatdataarepassedbetweenthe_ and theKESmodule

Specifycla_s (both_ clas._ andFS.Scla_es!)

Syntacticlimitation:usesinglewordclassnames.*/

addattr(app,"IM",in);

add_attr(app,"OOT",out);

/*put it on the blackboard*/

success= bb inse_Ibbp,"KS",t__mem);
if (success--=-i)(

printf("EP_)I_initializi_|s\n",te__mem->memd)er_name);exit(-I);

}7

/*clean_upis calledbeforeproqramexit.*/

voidclean_up(){
#ifdef_S

CloseSP.Graphicsi);
lendif

put_("Alltaskson the aqendahavebeencarriedout!");

puts("P.XIT");

);

/* initKS C createsa memberof classKS fora C function.It uses

a pointerto the functionasan attributevalue!*/

voidinit_KSC(_, name,fct_oomlent,fct_exeo,kind,in,out)

/* bb_tr bbp__ar *name,*fct_oomment;int (*fct_exec)(void*);*/

bbptr bbp;char*name,*fct_comment;int (*fct_exec)();
char*kind,*in,*out_(

te__mem: new_member();
stray(te%_mm->me_r_name,name);

te__mem->n_attr: 5;

te__mem->at_ibutes: MULL;
str@y(te__mem->cla__name,"KS");

B-9

ORIGINP_L _..... :

OF POOR _,J_,L!];_



Au_ 13 13:091990 ssMin.cPa_ 9

};

app= &(te__mem->at_ibutes);

add_at_(app,"function",fctcomment);
/* "function"stateswbattheC functiondoes.*/

add_general_attr(app,"executablefunction",4, f__exec);

add_attr(app,"KSkind",kind);

/* Nowdefinewhatdataarepassedbetween_ _ andthe_ module

Specifyclasses(b_tbBB classesand_ classes!)

Syntacticli_tation:usesiMle wordclassnames.*/

add_attr(app,"IN",in);

add_atlz(app,"(XTF",out);
/* putit on theblackboard*/

success--bb_insert(bbp,"KS',te__mem);

if (success = -i) (

prinU("E)JK)l_initialhiM _s\n",te__mem->memdDer_name);exit(-l);

);

/*reasse_class_com__ngeneratesa commandstriM to adda member

to a class.*/

char*reasse_class_com_gen(class_name,memd>er_name)

char*class_name,*memd_ername;{
staticcharcommand_striM[LINE_LENb_rll);

#ifdef HP-UX

sprintf (co,_and_striM, reassertclass_format,

class_name,member_name);
#endif

#ifdefMSDOS

sprintf(command_striM,reassertclass_fonmat,class_name,

class_name,member_name);
#endif

return comand_striM;

);

/*reassert_com__nqereratesa com_nd striM to chaMe tl_ valuesof

andattril_t_._ valuehas to be passedin as a st.riM.*/

char*reessext_com_(cI__name, me_r_name, ate_name,attr_sval)

char*cla_T_s_na_,*me_r_name,*ate_name,*attr_sval;(

staticcharcomaand_striM[LINE_LENGTH];
sprintf(comand_striM, reassert_format, class_name,member_name,

att___me, attr_sval);
return comand_striM;

);

/* reassert str corn.gen qenerates a commandstri M to chaMe the values of
and attribute. The value has to be passed in as a striM. The value
striM will be enclosed in quotes to satisfy KESfor values of

ICEStype "str" */
char *reassert_str_com_gen(class_name, member_dame, attr_name, attr_sval)

char *class_name, *member_dame,*attr_name, *attrsval; (
static char commnd_striM[ LINE_LENGTH];

B-IO
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sprintf(command_string,reassertstr format,class_name,member_name,

attr_name,attr_sval);

returncommand_string;

);

/*reassertglob_com_gengeneratesa commandstringto changetlm valuesof

a globalattribute.*/

char*reassertglobcom_gen(attrname,attr_val)

cbaz*attr_name,*attxval;(
staticcharcommand_string[LIIIE_LD_'flI];

sprintf(command_string,reas_mrt_glob_fomt,attr_nam,attr_val);

returncommand_string;

);

/* obtain_com___neratesa co_ stri_ which@tsims tim value

fora globalattributegivenby attrname,*/

_ar *obtain_com__n(attr_nam)char*attr_nam;(

staticcharcom_md_string[Lln_L_GTH];

sprintf(comand_string,obtain_fomt,attr_name);

return command_string;

);

/* display_com_gen_neratesandexecutesa coma_ string¢nicbreturnsthe
valueof an attributeof a classmember.The returnedstring

hasthe format"attributevalue<certainty>'.*/

char*displaycom_oyen(class_name,membername,attrname)

char*class_name,*memd)er_name,*attr_name;{

staticcbazcommand_string[3_];

sprintf(comma1__stri_,display_fomt,class_name,memd)er_name,

attr_name);

/* comardstrinq : l_S comaad(comard_strinq); */
/* not ready to execute, _st display */

puts(command_strinq);
return command_string;

);

#ifdef flSIX)S
/* initialize iindovs sets up tim Quinn Curtis graphics windows */

int initializ_ vindovs() (
InitSEGrapbics(6);
/*anyc_ to _ defaultwindowsgo here*/
SetPercentWindow(O.O,O.O,l.O,l.O,2);/* window2 is fullscreen*/
return O;

);
#endif

#ifdefHP-UX

intgreet_user(){

B-11
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puts( "Hello! ") ;
return O;

);

intget_filename(){
char*fl= "tdata.dat"_

char*f2: "_ata.dat";

me_3tr te__mem;

temp_mem= nevmember();
strcpy(temp_mem->member_name,name_gen("file"));
te__mem->n_attx= 3;
te__mem->attributes= NUU_;

strcpy(temp_mem->class_name,"FILE");

/* createattributes*/

app = _(temp_mem->attributes):
add_attr(al_,"Name",fl);
addattr(al_,"Type","testdata");

add_attr(app,"ComparisonType","non_);

/* put iton the blackboard*/

success= bb_insert(&blackboard,"FILE",tem__me|);

tup_mn = new_meaber()_
strcpy(tew_mem->mmber_name,name_gen("file"));

te__mem->nattr= 3;

temp_mem->attributes=ICULL;

strcpy(temp_mem->cla__name,"FILE");

/*createattributes*/

app = &(tew_me|->attributes);

add_attr(app,"Name",f2);

add_attr(app,"Type","comparisondata");

add_attr(aw,"ComparisonType","previoustest"):

/*put it on theblackboard*/

success= bb_inse_(&blackboard,"FILE",te__mem);

returnO;

};
#endif

B-12
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/*

*/

Thisis thebasicblackboardcom_icationmodule.It contains

functionsto assertdatainto_ modulesandto retrievedata

from_ modulesintoa C priam. _ dataaredescribedby

_HYIDEI_S'whichdefinethesl_arabledatatypes.Datatypesmust

beKES classes.H_Jkn_informationmustbe provided

for each knowledge base (IqESmodule) in the file nbeader.c".

Add informationfor each Imovl_ sourceyou provide there.
(The HEADninformation will be put on the blackboard. )
All datadeclared OOT
will be extracted from the KESmodule and made available on the

blackboard. All data declared IN (instances of classes declared IN)

wiiibe assertedinto a !_ module before any inferencestake place.
The blackboard is declared in file "comdef.b'; the overall include

structure is defined in "ssincl.b",
(A_ mMxIuleis a parsedm k_wle<k_ebase.)

#include"ssincl.h"

/* Familyof bladcboardFINDfunctions;theyallhave

blackboardas theirfirstparameter*/

/*bb_find_cla_retL_'_a pointerto tl_ classvim nameis givenor NULL*/

classstxbbfind_class(_,class_name)cla_$tr bbychar*cla__name;{

cla_1_ r_uni_._tr;

nmi_tr --bb;

while(runsinghtr!:NULL)

if (str_(runni_tr->class_name,class_name)=--O){

return running_ptr;
)
else{

rueninq_ptr: nmnino_ptr->fwd;
);

returnNULL;

I;

/* bb findmenslooksfor thefirstmemd_.rof a givenclassandreturns

a point-erto it or _ */

mem,ber_tr_ fi_ mm(_, class_name)class_tr_; char*class_name;{

class_trc_ptr;

member2tr m_ptr;

if ((c_tr--bb_fied_cla_(_,class_name))!--NULL)(

if ((m_ptr : c_ptr->members) != NUll,) {

returnm_ptr;
}

);
returnNULL;

};

/* find_merereturnsa memberwithgiven nameor NULL*/

B-14
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me_r2tr find_ram(first_mere,me_r_name) me_r2tr first_mere;

char*me_r name;{

memritr mitt = first_mere;

.'#bile(m2tr !=MULL){

if (strcmp(m_tr->me_r_name,me_r_name) =--O) (

returnm_ptr;

)
else{

m ptr --m ptr->fwd;

)
);
returnNULL;

!;

/* bb findval looksformembersof a classwhichhavea qiv_ value

fora givenattributeor MULL*/

/* FORNOW:returnonlytlmfirstonefound*/

/* FORNOW:assumeallvaluesarestrings(asreturnedfroml_!) */

memberptrbb findval(bb,class_name,attribute,value)
class/trbb; char*class_name;char*attribute;

attrvaltypevalue/*;uty[_value_t)l_e*/;{

classgtrcgtr;

membergtrm2tr;

attr_ptra2tr;

/* member)trresult;

member_ptraux_ptr;
intmatches;*/

if (c_ptr= bb_findclass(bb,classname)){

for (m_ptr= c ptr->members;m_ptr!=MULL;m_ptr= m_ptr->fwd){

/*findattribute*/

aptr = find_attr(m_ptr->attributss,attribute);

if (a2tr !--NULL){

/*assumestringvalues!!!IlI!IIII!!!!!!!!{!!!!!!!!!!!!!!!*/

if (str_(a_tr->attr_value.sval,value.sval)== O) {

returnm_tr;
)

)
}

);
returnMUM;

);

/* findattrreturnsan pointerto an attributeof a memberor NULL*/

attrptr find_attr(runninq_ptr,attribute)

attrptr runninq_ptr;char*attribute;{

while(t_i_tr !=MULL)
if (strcmp(running_ptr->attr_name,attribute)=--O){

returnrunninq_ptr;

}
else{
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running_ptr= running_ptr->fwd;

};
returnMULL;

i;

/*Findattrsvalreturnstl_ (string)valueof an attributeinan
attribute-listor aLL */

char*Findattrsval(m_tr,attribute)

mam_er_tr-m_tr;char*attribute;{

attr_tra_ptr;

a_tr = find_attr(m_tr->attributes,attribute);

if (a_tr !=NULL)returna_l)tr->attr_value.sval;
elsereturnMULL;

);

intfind_attr_ival(|_tr,attribute)

member_ptrm_ptr;char*attribute;{

attr_tra_Iot.r;

a2tr = find_attr(m2tr->attributes,attribute);

if (a_Iotr!=NULL)returnagtr->attr_value.ival;
};

floatfind_attrFval(m_Iotr,attribute)

me_er_tr m_ptr;char *attribute;{

attr_tra_gtr;

a/otr= find_attr(mgtr->attributes,attribute);

if (a_ptr!=aLL) returna_ptr->attr_value.fval;

);

void*find_attrgptr(m_ptr,attribute)

mnbergtr m_ptr;char*attribute;{

attrgtrajotr;

a_gtr= find_attr(|.gtr->attributes,attribute);

if (a__tr!=NVbL)returna_tr->attr_value._tr;

I:

/* Familyof insert/_anqe/deletebb functions*/

/* ROLE:a membervbicbexistswillbe modifiedbut neverre-inserted.

sl_ifiedvalueswilloverwriteexistin9 o,es,othervaluesremain.*/

/*WATCH:siDcetbe Blackboardmaybemodifiedit is necessaryto

passa pointerto the BB, insteadof theB8 pointeritself,e.g.

the _B is initially empty and we need to cbancje the _ pointer itself!
Use type bb_ptr! */

/*memow allocation*/

class_trnew_class()(

return(class_tr)malloc(sizeof(class_tyl>e));

);

member_gtrne__member(){

return(memberptr)malloc(sizeof(member_typo));

);
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attr_ptrnew_attr(){

return(attr_ptr)malloc(sizeof(attr_type));

/*bb insertaddsnew information.Returns0 if newmemberwas

inserted,1 forupdateof existingmember,-I otbervise*/

intbbinsert(bbp,class_nam,n_uUer)

bb_gtrbbp;char*class_nau;mnberptr n_mnber; {
class_ptrc_ptr;

mlber_ptrm_ptr;

attr_ptra_gtr, a2_ptr;
intrval= O;

if ((c_Dtr= bb find_class(*bbp,class_nau))== NULL){
/*new class*/

if (bb_size< XIXI_){

c_ptr= new_class();

/*insertat beginningof bb */
bb size+= I;

if (*bbp!=MULL)(*bbp)->bwd= c_ptr;
c_ptr->fwd= *bbp;

*bbp= c2tr;

c_ptr->nm_ers = O;

c_ptr->bwd= NULL;

strcpy(c_tr->class_nam,class_nam);

c ptr->ne_ers= NULL;
)
else{

printf("i_L_OR:Already_XBB (li)classeson theBlackJ_ard!\n",MAXBB);
return(-l);

}

i; /* Mowwe aresurethattheclassexistsandc_ptrpointsto it */

if ((|_ptr= find_mem(c_ptr->nenbers,n_aead)er->mnber_nam))== _[OLL){
/* newmeid)er*/

/**************t
if (c_tr->n_mmd_rs< _X]f_f){

I* m_gtr= new_maber();*I

m_ptr= n_melber;/*use existingmember:don'tcreatea duplicate*/
c9tr->n_m_ers += i;

if (c9tr->mnbersl=NULL)c 9tr->mabers->bwd= m gtr;

/* strcpy(m_tr->member_name,n_memd_r->member_name);*/
m2_->fwd = c2tr->mmd)ers;

c2tr->mead)ers= mItr;

m2tr->bwd= NULL;

/* m_tz->att_ibutss= NULL;

m_tr->n_attr= O; */

/* _e newmemberretainsallits attributes!*/
}
else{

printf("EllOR:AlreadyKAX_EN(%i)membersof class|s!\n",

B-17

ORIGINAL P_ ie

OF POOR _4,_!T¥



Jul 19 17:24 1990 bbcom.c Page5

HAX]tEH,c_ptr->class_name);
return -1;

}
else { /* member exists */
rval= I;

/* Nowinsertvaluesoverwriteexistingones*/

for (aptr = n_mnber->attributes;a ptr Z=NOLL;a_tr = a_ptr->fwd)(

if ((a2_tr= find_attr(m_tr->attributes,a_Dtr->attr_name))== NULL)(
/*new attribute*/

i*****************/

if (m_ptr->n_attr< NAXATT)(

a2_tr = new_attr()

m_ptr->nattr+= i;

if (mstr->attributes!=NO_) m$1_->attributes->l_d= a2_tr;

s_y (a2_- >attrname,astr->attr_name);

a2_tr->fvd: m_tr->attributes;

m$_->attrib_es : a23tr;

a2_tr->bvd= NULL;
)
else {

printf("E_R:Already_XATT (_i)attributesin member_s of classts!\n",

NAXAI'f,mstr->memUDer_name,c_tr->cla__name)
return-I

)

/*NON COPY_. VALUE*/

strcpy(a2_ptr->attrvalue.sval,a_ptr->attr_value.sval);
)
free(n_member);/* we copiedeverytbinq*/

};
returnrval;

};

/* bb deleteremovesa memberfromthebb.Ret,r,s0 itsuccessful,

I if membernotfound,2 ifclassnot found,-I otherwise*/

intbb_delete(bbp,class_name,member_name)

bb$tx bl_p;char*class_,ame;char*member_name;(
cla.#tr c#tr;

memU_er#trm_ptr;

if ((c#tr: bb ti__class(*bbl),cla._name)):: I(1)U_)return2;

if ((m_tr: fi__mem(c_tr->memU)ers,mem,bername))::IiUU_)returnI;

if (msU->bvd :--NULL){

c_t_->members= m_tr->f_d;
)
else (

mstr->bvd->fvd= m_tr->fvd_
);
it (mstr->fwd!=_LL) (

mstr->fvd->b_d= m_tr->bwd;

B-18

ORIGINAL _,_ _,_
OF POOR QUALITY



Jul 19 17:241990 bbcomm.cPage6

free(m_ptr);

c_ptr->n_members-= I;

/*THeE ISNO WAY TO RE/_3VECLASSES(doesnotseemnecessary)*/

/*THEREISNO WAY TO RENOVEATTRIBOTES(doesnotseemnecessary)*/

/*Communicationwithknowledgesources*/

/* add attrcreatesa newattributeandaddsit to a listof attributes.
It returns0 if successful,I if attrexists,-i otherwise.It does

nottestforoverflowsinceit basno accessto tl_memberobject.

It setsthebwd pointerof thenewelementto WULL. */

int add_attr(a_list,a_name,a_val)

attr_tr*a_list;char*a_name;char*a_val;{

attr_trn attr;
if ((find_attr(*a_list,a_name))!=NULL)returni;

n attr= new_attr();
/i insertat startof list*/

n attr->fwd= *aiist;
if (*a_list)--NULL)(*a_list)->bwd= n_attr;

*a_list= n_attr;
n attr->bwd= NULL;

strcpy(n_attr->at__name,a_name);

strcpy(n_attr->attr_value.sval,a_val);/* assumestringvalue*/
returnO;

);

/* add_general_attxis a generalizationof addattr. It allowsany typeof
attributevalueto be inserted,a_tYl_indicatesthe type. */

intadd_general_attr(a_list,a_name,a_ty_, a_val)

attr_tr*a_list;char*a_name;inta_t_; attr_val_tyl_a_vab (

attr_trn_attr;

if ((find_attr(*a_list,a_name))1=NULL)returnI;

n attr--new_attr();
/i insertat startof list*/

n attr->fwd= *a_list;

if (*a_list!--IIUIJ,)(*a_list)->bwd= n_attr;

*a list--n_attr;
n attr->bwd= NULL;

strcpy(n_att_->attr_name,a_name);

switcb(a_t)_e){
casei: n attr->at_value.ival= a_val.ivabbreak;/* integer*/
case2: n-attr->attr-value.fval= a val.fval;break;/*float*/

case4: n attr->attr_value._tr= a_val._tr;break;/*pointer*/

default:strcpy(n_attr->attr_value.sval,a_val.sval);/* assumestringvalue*/
break;

>
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returnO;

i;
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/* Thisfilecontainsthe subroutinesrequiredby theKES

embeddingmethodoloqy.
*/

linclude"ssincl.b"

#ifdef_DOS

char*positioncursor():
#endif

intload_kb(kb_name)

char*kbname;
{

/*Loadtheparsedknowledgebase*/

if ()(ES_id__(strcat(__nam,E_#S),_L) !=_success_c) {

printf("_orloadinglmowle_lebaseIs.");
return(_IT);

)
return{OK);

)

/*Whena KESfunctionis calledandit generatesa me_age

I(ESreceive_msq()is calledto displaythe message.Thisfunctionis a

modifiedversionof thefunctionl__receive_mesq()providedin theV_S

filepsembed.c.It printsallmessagesreceivedexceptforthosemessages

precedinga breakin theknowledgebase,becausebreaksareignoredin

thisprogram.*/

void

ICESreceive__(message_text,message_class)
__string_typamessage_text; /* Actualmessage*/

KES__class_typarage_class; /*Classofrage */
{

if ((strc_(message_text,"\nlh/pe'c'to begin\rim)!=O) _

strcw(message_text,"\nTypa'n'for anothercaseor 's'to stop\n")!=0 _&

strncmp(mssagetext,"\nNarning",8) !=O) {
#ifdefMSIX)S

display_as_mssage(message_text);
#endif

#ifdef )-UX

puts(mssagetext)_ /* Printtbem_age */
|endif

)

/*KES callsZES_give_valuestr()vbenit needsto determinethe valuefor an

attributethateitherhasno knovledgesources(aninputattribute),or is

beingaskedfor explicitly.The functionbelowis a modifiedversionof a

samplefunctionprovidedin thel_ filepaembed.c.Itaccessesa

simulateddatabaseif the attributecargoloadis beingaskedfor;
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otherwisethe enduserisaskedforthe value. If theresponseis a why

or explain,itexecutesit as a KEScommand;otherwiseitchecksifthe

responseis a validvalueforthe attributebeforereturningit.*/

KLS_s_ing_type

KES_give_value_str(attzibute_desc)

KF_S_atrty_ attribute_desc; /* Pointsto an attribute*/

{
/* Holdsenduserinput. Mustbe staticbecauseit is rettum_.*/

staticchar response[LIn_L_];
#ifdef_

staticchar*prompt,str2[LIl__L_l_];
/endif

KES_string_t_evalue; /* Forattributevalue*/

/* Outputparameterfor__co,mand()*/

KES_comm_nd_tyl_co_nd_tyI_;

/* Holdsattributevalueerror_ssage */

KF_S_string_tyl_error_m_s9;

for (;;)( /*Loopuntila validattributevalueis

input*/

/* Printattributequestionprompt*/

#ifdef_-UX

printf("ls",l_Sgaskfor2rompt(attribute_desc));

fflush(stdout);
#endif

/ifdefISDOS

prompt: KF__g_askfor_prozpt(attribute_desc);

displayas_dialoque(prowt);
strcpy(str2,positioncursor(proapt));

if (str2=: NULL)strcpy(str2,prompt);

strcpy(str2,strcat(str2," "));
#endif

fqets(response,LIRla_i_, stdin); /*Get enduserresponse*/

#ifdef_

strcpy(str2, strcat(str2,response));

display_as_dialoque(str2);
#endif

response[strlen(response)- l] : '\0';/*Removetrailingnevline*/

/* Executevby or explaincommandif entered.

explainsinceit may be followedby a number.*/
if (strctp(response,"why"):: 0 ,,"

strnc1_(response,"explain",7) ==O) {

strn_mp() isusedfor
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/*Theoutputparametercommand_typeis ignoredherebecausewe

do not needto knowwhatcommandwas issued.*/
/ifdef_-UX

puts(l__command(response,&command_type));
iendif

#ifdefESDOS

displayas_message(KES_comand(response,&command_type));
lendif

)

/*Checkifresponseis a validvaluefor theattributebefore

returninqit */

else{

error_msq= KES_is_valid_value(attribute_desc,response);

if (*ercor_lesg== '\0'){

break; /*A validattributevaluewas given*/
} else{

#ifdefm_-ux

puts(error_mesg);/*Printerrormssage */
#endif

|ifdefMSDOS

displaLas message(e_or_mesg);
#endif

}

value = response; /* _ssign enduser input to attribute value */
return(value); /*Returnattributevalue*/

/* KES callsKES_gmembers()whenitneedsto determinethe membersfora

classthateitherhasno knowledgesources,or is beinqaskedfor
explicitly.The functionbelowis a modifiedversionof a samplefunction

providedin theKES filepsembed.c.Itaccessesa simulateddatabaseif

themembersofthe classPlanesisaskedfor. If theclassbeinqasked
foris oneotherthanPlanesor Vehicles,theend useris askedfor the

ml_ers. If _ responseis an explain,itexe:utesit as a KESc_mmnd;

otherwiseit ct_w.J_sif Rlmresponseis a validmeld_erlistfor theclass

beforeret_i_ it. */

K__strinqt_ge

ICES_qmembers(class_name)

KiS_strinq_typeclass_name;/* Classname*/

{

/*Holdsenduserinput. Mustbe staticbecauseit is returned.*/

staticchar response[LIllE_LENGTH];
#ifdefMSDOS

char *prompt, str2[LINE_L_G_];
|endif
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KES_string_typemember_names;/*Formemberlist*/

/*Outputparameterfor KES_conand()*/

KES_conand_typecomandtype;

/* Holds =ember list error message */

KES_string_type error mesg;

for (_;)I /* Loopuntila validmLber listis input*/

/*Printclassquestio,pronpt*/
#ifdefHP-UX

printf("is",]_S_g_prowt_class(classnam));
fflusb(stdout);

|endif

#ifdef_DOS

pronpt= l_g_proxpt_ctass(classname)_

displayasdialoque{prowt)_
strcpy(str2,positioncursor{pronpt))_

if (str2 == IRLL) strcpy(str2, pro_t);
strcpy(str2, stzcat(str2, " "));

|endif
fgets(response, LI__LBG_, stdin)_ /* Get enduser response*/

#ifdef XSDOS

strcpy(str2, strcat(str2, response));
display_as_diaZoque(str2);

#endif

response[strlen{response) - 1] = '\0'; /* Removetrailing nevline */

/* Executeexplaincom_nd if entered*/

if (strc_{responss,"explain")== O) {

do

#ifdef

#endif

#ifdef

#endif

/*The outputparametercoland_typeis iqnoredherebecausewe
not needto knowwI_atcom_nd was issued.*/

HP-OX

puts(KES_comend(response,&comand_type));

lSDOS

display_as_messaoje(KES_command(response,&couand_type) );

)
/*Checkif responseis a validmleer listfortheclassbefore

returningit */

else{

errormsq = l_S_is_validme_ers(classnam,response,

l__false_c);
if {*error_aesq== '\0'){

break; /* A validmenberlistwas input*/

)else{
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#ifdef HP-UX

puts(error__sg);/* _int error message */
#endif

#ifdef_DOS

display_as_mssaqe(error_eesq);
|endif

)
}

)

return(mead_er_names);
}
|ifdefMSI_S

char*p_sition_cn_-sor(line)
char*line;{
char*last;

intpos;

last= strrcbr(line,'\n');

if (last==NULL)last= lime;

Dos = strlen(last)+ 5;

settextposition(ll,Dos);
return last;

}
#endif

/*Assignenduserresponseto membernames*/
/*Retur.membernames*/
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types:
Size Type: sgl

(A Little, Noticeably, A Lot).
Direction Type: sgl

(Too Hi@, Too Lo_, Garbage).
StatusType:sgl

FDiscovered,Verified,Ic_ored,Explained).

S ChangeType:sgl

(User, Systel).

InterType:sql

(yes,no).
]_elation Type: sgl

(proportional, inverse proportional ).
%

attributes:

Progress:truth[default:false].

FindPrimaryAnomalies:truth[default:false].

InternalForwardPropagation:truth[default:false].

ExternalForwardPropagation:truth[default:false].

Energycouplingbackwardpropagation:truth[default:false].
diaqnose: truth.

ComponentWith Top Anomaly: str.
Parameter With Top Anomaly: str.

classes:

COgI_EIIT:[default:COIXm_]
attributes:

Name:str

[default:""]

{explain:"Thenameof the component"}.
ID:str

{explain:"Theidentificationof theactualcomponent,e.g.serialnumber").

\ If ID = "" cheekthe 'IsPartOf'Component!

\ Type:sgl
\ (pump, turbine, pipe, valve, burner, sensor).

State:sgl

(AssumedGood,Suspected,ll,own faulty,KnownGood,Exonerated)

[default:Assumd Good].
Is PartOf: sir

[default: "none"]
(explain: "#ale of comt_onentthis one is a part of"}.

Is Com[wsedOf: str
[default:""]

(explain:"Listof colqx)nentsof thiscomponent"}.

Bas Anomaly:truth

[default:false].

Has TopAnomaly:trnth

[default:true}.
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endclass.

ABSTRACTCO_: [inherits:COI_OI_] [default:ACDmmy]

\ a componentwhichisnot explicitlylodeledexcepttttrou@itsparts,

\ e.g.a turbopu_p.
attributes:

Function:str.

t

endclass.

COI_OLLER:[inherits:COIfl_] [default:CTDmmy]
attributes:

ControlledParamter:str.

ActuatedParamter:str.

ActuationLi_itHi@: real.
ActuationLiar Low:real.

Relation:RelationType

{explain:
"proportional:if actuationgoesup, so doesthe controlledvalue"}.

t

endclass.

TI_AMOCO_)NDIT:[inherits:_] [default:TI)Du_y]
attributes:

Mediun: sql
(LOX, Liquid Fuel, Partially BurnedFuel, BtznedGas).

]{ediulInput:str

[default:""]
{explain:'Thenam of the colponentattachedto the input'}.

MediumOutput:str

[default:""]
{explain: "The nameof the component attached to the output"}.

lleditmInputSensor: str

[default:""]

(explain:"Theham of a sensorat theinput(ora listof hamS)").

MeditmOutputSensor:str

[default:""]

{explain:"Thenae of a sensorat theoutput(ora listof na|es)"}.
InternalSensor:str

[default:""]

{explain:"Thenae of an internalsensor"}.

Has Input k_omly: truth.
Has output Anomly: truth.

t
endclass.

S_ISOR: [inherits: COI6_ffiff] [default: SEI_By]
attributes:

Coxponentflare:str

{explain:"Thenam of the nearestcol_onent"}.

Location:sql

{Inside,Medium Input,Medium Output,EnergyInput,EnergyOutput)

{explain:"Locationrelativeto theco|q>onent"}.

ParameterType: sql
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(Temperature,Pressure,FlowRate,ValvePosition).
ParameterName:str

{explain:"Thenameof themeasuredparameter"}.
CurrentValue:real.

currentValueIsAnomalous:tru_

[default:false].

SensorType:ngl

(Single,Redundant,Averaqe)

{explain:nAn 'average'sensoraveraqesthe readings",
"fromtwo or more'redundant'sensors").

AveraqeSensorName:str

[default:""]
{explain:"Thenameof the averaqingsensorif thisisa redundantsensor").

l

endclass.

TURBOI_]_:[inlmrits:ABSTRACT__]
attrib_es:

Time:int

{explain:"Numberof secondsit hasrun").

endclass.

MANIFOLD:[inlmrits:lllZPJ(OCX)I_)I(EIff]
attributes:

NumberOf Inputs:int.

NumberOf Outputs:int.
{explain:"Thenamesof the componentsattachedto inputsandouptuts",

"arelistedin 'MediumInput'and 'MediumOuput'inthe",

"formof a characterstringseparatedby spaces.").

Thereis no wayto attachsensorsto a manifoldin a sensiblemanner.

Theyhaveto be specifiedwiththeconnectedcomponents.
%

endclass.

EI_Y CONYCONP:[inherits:I_ CO_] [default:_IX_]
attributes:

Efficiency:real.

PowerCoupledTo: str

[default:""]
{explain:"Timnameof thecomponentwhichis coupledto thisone").

PowerDirection:sql

(In,Out)

{explain:"inmeansenerc_istransferredto them4i_,",

"outtheotherway"}.
PowerResult:str

{explain: "The quantityvhi_ is affected by the power input").
e.g. for a pulp this is the pressure difference!

Couplinq Sensor: str

[default:""]
{explain:"ksensorwhichmeasurestheenergycouplingmechanism"}.

IlasCouplingAnomaly:truth.
l
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endclass.

PUMP:[inherits:EN_I_GY_CONV_CONP]
endclass.

TURBINE:[inherits:EI(ERGY_CONV_COMP][default:TUD_my]
endclass.

GAS TURBINE:[inherits:TURBINE]
e_dclass.

HYDRAULICTURBINE:[inl_rits:TURBINE]
endclass.

PIPE:[inherits:THE_MO_COMI_)MENT]
attributes:

NormalPressureDrop:real.
t

endclass.

B_RMER:[inlmrits:THEI_MO_COMPONENT]
endclass.

VALVE:[in_rits:E_X_GY_CONV_CONP]
UseSENSOR,TESTDATA,CO_ARISON_DATAandVARIATIONLIKITSto

analyzevalveperformance.'PowerCoupledTo' istlm controlinputand

'Co_linqSensor'isthe positionsensor.
endclass.

TESTDATA:
attributes:

Parameter:str

(explain:"Nameof the parameter"}.
Value:real

{explain:"Valueof the parameter").

Interestinq:sql (yes,no)

[default:no]
(explain:"yes:if thevalueis usefulfor diaqnosis").

endclass.

CO_ARISONDATA:

attributes:

Parameter:str

{explain:"l_ameof theparameter").
Value:real

{explain:"Valueof theparameter").

endclass.

AJK)K_IIES:

attributes:

paramter: str.

Size: Size Type.
Direction: Direction Type.

Status:StatusType.

Status(3anqeTime:int.

StatusChangeInitiator:S ChangeType

{default:System).

ExplainedBy: str
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_explain:"Thehypotheseswhichexplainthisanomaly"}.
%

endclass.

ltYgKItLSL_:
attributes:

ExplainsAnomly Of Paramater:str.

Fault:sgl
(Unknown,FluidLeak,Obstruction,SealLeakage,RotorProblem,

EfficiencyProblem).

FaultyComponent:sir.
ViolatedBehavior:str.

l

endclass.

%

rules:

RBI:
e:EMERGYCOHVCOMP

if inclass(e,-l_P)

thene>PowerDirection= In.

endif.

RB2:

e:ENF_GYCONYCOMP

if inclassle,-GAS__I_) or
inclass(e, HYDRAULIC_TURBIliE)

thene>PowerDirection= O_t.

endif.

RI:

c:CO_mfr

ifc>HasTop Anomaly: true

thenComponentWithTopAnomaly: c>Nama.

messagecombine("Therootanomalyappearsto be at tlm ",
c>Nama).

endif.

\ If thereisno anomalydirectlyassociatedwiththe component,

\ we cannotdeterminetimparameterthatis the rootanomaly.
R2:

c:COIQK31B_,s:SDISOR,a:AllO_kLIZS

if ComponentWith Top Anomaly= c>game and
s>ComponentName= c>gamaand
a>Parameter--s>ParamaterName

then Parameter With Top Anomaly : a>Paramater.
message combine ("The parameter with tim root anomaly is ",

a>Paramater).
endif.

R2a:

ifComponentWithTopAnomaly: c>Nameand
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inclasslc, CONTROLLER)= true

then Parameter With Top Anomaly= c>ActuatedParameter.

|essageconbine("Theparamterwiththerootanomalyis ",

c>ActuatedParaneter).
endif.

\******

R2b:

c:TIE_OCO_)_IT

if c>HasInputAnonaly= trueor

c>HasOutputAnomaly= true

thenc>Ha$Anomaly= true.
endif.

R2c:

e:E_GY CO_ COHP

if e>Has-CouplingAnomaly

thene>HasAnomly = true.
endif.

************************************************************************

\ Identifyanonaloussensorreadings
RSI:

s:S_SOR,a:ANOI@IIES
if s>ParaneterNa|e= a>Paraleter

thens>CurrentValueIs Anomalous= true.

endif.

Primary anonali_:

Note the s>Current Value is Anomlous works but produces amltiple
identical conclusions

R3al:

c:_ERMOCO_OI_NT,s:SEXSOR,a:A_OI_kLIES

if FindPrimaryAnomalies : trueand

s>CoWouentNa|e: c>Ham and
s>CurrentValue IsAnoaalons= trueand

s>ParamterNam = a>Paramterand

s>l_.atio.: L-_liua_Input

thenc>HasInputAnomly = true.

mssagecombine(c>Nam," has inputanomly").
endif.

R3a2:

c:_[£tXO__, s:S_iSOt, a:MIOtUIIE
if FindPrimry Ano|alies: trueand

s>Co_ouentNa|e= c>Naleand
s>CurrentValueIs Anonalons: trueand

s>ParamterNam = a>Paramterand

s>Location= Nediua Output
thenc>HasOutputAnomaly= true.
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messagecombine(c>Name," hasoutputanomaly").
endif.

R3a3:

e:EN_GY_CO__COIP,s:S_t.q)R,a:A_)RALI_
if FindPrimaryAnomalies= trueand

s>CowouentNam = e>Mam and
s>CurrentValueIs Anomalous= trueand

s>Paraneter_ane= a>Paramterand

s>Ix_ation= Ener_ Inputor

s>Location--Ener_/Output

thene>HasCouplinqAnomaly= true.

nessaqecombine(e>Nam," hascouplinqanomly").
endif.

R3a4:

c:CONTROLLE_,a:ANOMALIES

if FindPrimaryAnomlies= trueand
c>ActuatedParamter= a>Paramteror

c>ControlledParamter= a>Paraeter

thenc>llasAnomaly= true.

nessaqecombine("Controller", c>Nam,
" is involvedwithanomalousvalues").

endif.

\**********

\ Identifycorrectparaneters:sensorsdo not inplyananomaly

R3a5:

c:TI_R__CO_)NEHT,s:S_SOR,a:ANOMALIES
if FindPrimaryAnomalies= trueand

s>Co_onentNama= c>Naneand
s>CttrrentValueIs Anomalous= falseand

\ s>Paraneter Nae = a>Paramter and

s>i,ocation = Ileditm_ Input
then c>Ilas Input Anomaly = false.

\ mssaqe conbine(c>Nam," inputok").
endif.

R3a6:

c:TR_JIO_, s:S_ISOR,a:MlOlt_IES

if Find[_ima__Anomalies= trueand

s>Cowomt la,e: c>Nam and
s>CurrentValueIs Anomalous= falseand

\ s>ParamterYam : a>Paramterand
s>Location= Meditm_Output

thenc>HasOutputAnomaly= false.

\ mssagecombine(c>Nam," outputok").
endif.

R3a7:

e:DIERGY_COI__COMP,s:SENSOR,a:MIOliALIES
ifFindPrimry Anomalies= trueand

s>CowonentNae = e>Naneand
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s>CurrentValueIsAnomalous= falseand

\ s>ParameterName= a>Parameterand

s>Location= Ener_ Inputor

s>Location= Ener_ Output

thene>HasCouplingAnomaly= false.

\ messagecombine(e>Name," couplingok').
endif.

\ Internalforwardpropagation:assumeif in is anomalous,outis too

\ unlessotherwiseknown. Thiswillincludetoomanycomponents,

\ butthatis no problem.

R3bl:

if InternalForwardPropagation: trueand

t>HasInputAnomaly= true

thenreassertt>HasOutputAnomaly= true<0.97.

messagecombine(t>mame," hasoutputanomaly").
endif.

R3b2:

e:ENEI_GYCO_'CO_

if InternalForwardPropagation= trueand

e>HasCouplingAnomaly= true

thenreasserte>HasOutputAnomaly= true<0.97.

messagecombine(e>Mame," has outputanomaly").
endif.

R363:

e:EMERGYCO_ COMP

ifInternalForwardPropagation= trueand

e>HasInputAnomaly= trueand
e>PowerDirection= Out

thenreasserte>HasCouplingAnomaly= true<0.9>.

messagecombine(e>Name," has couplinganomaly").
endif.

\***********

\Externalforwardpropagation

R3cI:

t:111ZIMO_C_, t2:THEPJ40CO_
ifExternalForwardPropagation= trueand

t>MediunInput= t2>Nameand

t2>HasOutputAnomaly= true

thent>HasInputAnomaly= true<0.9>.

messagecombine(t>Mame," has inputanomaly").
endif.

R3C2:

e:ENERGY_CO_CO_,e2:D[ERGYCOMV_COMP
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if ExternalForwardPropagation= trueand
e>PoverDirection= Inand

e>PowerCoupledTo = e2>Nae and

e2>llasCouplingAnomaly= true

thene>HasCouplingAnomaly= true<0.9>.

messagecombine{e>Name," hascouplinganomaly").
endif.

\ Energycouplingbackvardpropagation

R3dl:

e:ENE_Y_COkW_COIIP,e2:ENERGYCO]IVCO)IP
if Energy couplingbeckvard propagation: true and

e>PowerDirection: Out and

e>PowerCoupledTo = e2>Nameand

e2>HasCouplingAnomaly= true

thene>_asCouplingAnomaly= true<0.9>.

imssagecombine(e>Name," hascouplinganomaly"}.
endif.

R4:
c:COMPONDrr

if c>HasAnomaly= false

thenc>HasTopAnomaly= false.
endif.

R5:

t:THE__, c:CONPON_

if t>BasAnomaly: trueand

t>NedhmINput/ ""a,d

t>lieditmInput= c>llamand

c>llas Anomaly= true
then t>Has Top Anomly -- false.

mssaqe combine("Anomaliesof ", t>Name,

" may be causedby ", c>NaM).
endif.

R6:

if e>Has Anomly = true and
e>PowerDirection: In and

e>PoverCoupledTo : c>Nameand

c>HasAnomaly: true

then e>Has Top Anomaly= false.

C-IO
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messagecombine("Anomaliesof ",e>Namo,
" may be causedby ", c>Mamo).

endif.

R7a:

c:CO_TROLL_,a:AN(RALIE5

ifc>HasAnomly = trueand
c>ControlledParauter= a>Paramter

thenc>HasTopAnolaly= false.

mossagecolbine("Anolaliesof ",c>Namo,
" uy be causedby ",c>ControlledParamter).

endif.

If thecontrolleradjuststhecontrolledparamterto the correct

value,it isnot considereda rootanomalyalthoughit is themost

upstream cowonent in tim physical chain.
RTb:

c:CO_LLn, s:SD[SOR
if c>HasAnomly : true and

s>ParamoterHam = c>ControlledParamter and
s>CurrentValue Is Anomalous= false

then c>HasTop Anomaly= false.
messagecombine ("Anomaliesof ", c>Nue,

" maybe causedby ", c>ControlledParamoter).

endif.

R8: notnecessaryif onlyvalvesarecontrolled:seeVALVE

c:COFROLL_,cI:COI(POIR_,s:SBSOR

if cl>lias Anomaly : true and
s>Co_nent Hamo= cl>llane and
s>ParamterNaue: c>ActuatedParamoterand

c>ActuatedParamter= a>Paramter

then cl>Has Top A.omaly = false.

demons:

act demon:
wben

diagno_= true
then

m_age
cosine ("BeginningDiag,osis").

\unfortunately:we haveto takecareof thed,,_ymo_w_s

_:CO_>Has A_maly = false.

_STRACT_:A_y>Hns Anomaly= false.
\ (I)NTIOLLER:CTDuBy>HasAnomly = false.

Tm_O (DI_)ND_:TD_>Has Anomaly= false.

\ S_SOR:SEDumy>liasAnomaly= false.
EI_GY_CO__COMP:ECDuBy>HasAnomaly: false.
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TURBINE:TUDmmy>HasAnolaly : false.
\ nessage "********ClassifyingSensorReadies

foralls:SEEWR do

obtains>CurrentValueIsInomlous.

endforall.

\ break.

message"********Finding primary anomalies
FindPrimaryAnomalies--true.
forallc:TIIEPaO_ do

obtainc>llasInputAnomaly.

obtainc>llasOutputAnomaly,
endforall.

forallc:E_RGY CO_ CO_ do

obtainc>HasCouplingAnomaly.
endforall.

forallc:_ do

obtainc>Sas_omaly.
endferall.

reassert Find Primary Anomalies -- false.
Progress = true.

whileProgress: true do

reassertProgress= false.

message"********Internalforward propagation

reassertInternalForwardPropagation= true.
forallc:TIE_O (x)_)l_l'r do

ifstatus(c>H-asOutput ABomaly): _o_ t3en

erasec>HasAnomaly.

erasec>IiasOutputAnomaly.
obtain c>HasOutput Anomaly.
obtainc>SasAnomaly.

ifstatus(c>BasOutputAnomaly)= knownthen

reassertl'ro_ess= true.
endif.

endif.

endforall.

forallc:EIIE_GYCONVCORPdo
ifstatos(c>H-asCo_ling Anomaly)= tm)movnthen

erase c>Has Anomly.
erase c>HasCouplingAnomaly.
obtainc>Has CouplingAnomaly.
obtainc>IlasAnomaly.

ifstatus(c>IlasCouplingAnomaly)= k.ovnthen

reassertPro_ = true.
endif.

endif.

endforall.

reassert InternalForwardPropagation = false.
mssage "********Externalforward propagation
reassert External ForwardPropagation = true.
forall c:THE_O _ do

********".

********w.

********w.

********".
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ifstatus(c>BasInputAnomaly)= u_J_ovnthen

erasec>IlasAnomaly.

erasec>BasInputAnomaly.

obtainc>llasInputAnomaly.

obtainc>HasAnomaly.

ifstatus(c>BasInputAnomaly)--knownthen

reassertProgress= true.
endif.

endif.

endforall.

forallc:_Y CO_ COHPdo

ifstatus(c>_sCouplingAnomaly)= unknownand

c>PowerDirection= In tlmn

erasec>llasAnomaly.

erasec>BasCouplingAnomaly.

obtainc>BasCouplingAnomaly.

obtainc>[lasAnomaly.

if status(c>IlasCouplingAnomaly)= knownthen

reassertProgress= truer_
endif.

endif.

endforall.

endwhile.

reassertExternalForwardPropagation= false.

message"********Energycouplingbackwardpropagation

reassertEnergycouplingbackwardpropagation= true.
foralle:ZI_RGYCONVCOP do

ifstatus(e>llasCouplingAnomaly)= unknownand
e>PowerDirection= Out then

erase e>Has Anomaly.
erasee>IlasCouplingAnomaly.
obtaine>llasAnomaly.

endif.

endforall.

reassert_erqy couplingbackwardpropagation= false.

,%******n.

message"Thefollovingcomponentssbovor areexpectedto sbow".

|mssage"anomalousvalues:".
obtainParamterWithTopAnomaly.

if status(ComI_nentWithTopAnomaly)= unknovnthen
ve were unsuccessful!

forall c:(X_ROLL_tdo

if c>Has Anomaly= true then
messagecombine("Theanomalyis situatedbetveen",

c>ActuatedParamter," and ",

c>ControlledParameter).

reassertPara_:terWithTop Anomaly= c>kctuatedPara|eter.

endif.

endforall.
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endif.

endwhen.

%

actions:

message"Theseactionswillnotbe used".

assertclassPUMP= LPI_,HPFP,LPOP,HPOP.
PUMP:LPFP>Name: "LPFP".

I_INP:LPFP>IsPartOf : "LPFTP".

PUllP:lDFP>Nedium: LiquidFuel.

l_:LPFP>NediulInput: ""

PUNP:LPFP>NeditumOutput: "FIOI".
PUIIP:LPFP>NediulInputSensor= "LPFP__ELIN PR 5 LPFP_I_EL_IN_TBP_5".

l_:LPFP>MediumOutputSensor : ""
P_NP:LPFP>InternalSensor= ""

l_:LPFP>Efficiency: 1.O.

PUKP:LPFP>PowerCoupledTo = "LPFT".
PUNP:LPFP>PowerDirection: In.

l_IP:LPFP>CouplinqSensor= "52".

PI_IP:HPFP>Name= 9]PFP".

IR_IP:HPFP>Nedium: LiquidFuel.

P1_IP:lIPFP>llediumInput: "FIOI".

l_:liPFP>Nedi_mOutput: "Fl02".

PI_IP:HPFP>NediulInputSensor: "".

\ "IIPFP_IN_PRESS_Sm_l__IN_TM_SHPFP_FUEL_FLOW_S".
I_IIP:HPFP>NediulOutputSensor= "IIPFP_DISCII_PR_SIIPFP_DISCII_TEXP_S".

Pl_P:IPFP>InternalSensor= ""

Pl_P:KPFP>Efficiency: 1.0.

I_IIP:HPFP>PowerCowled To = "IPFT".
P_P:_FP>PowerDirection= In.

Pl_P:_FP>CouplingSensor= "IPFT_SRAFT_SPE_)_S".

PUMP:LPOP>Name= "LPOP".

l_IP:LPOP>Neditm: _X.

l_lqP:LPOP>MediumInput= ""

l_IP:lDOP>NediumOutput : "0301".

I_:IJR)P>Pov_CoupledTo = "l_".
I_IP:LK)P>PowerDirection: In.

I_:EPOP>NaIe--"LI_)P".

IM]llP:Bl_)P>Nedium: _X.

assertclassHYDRAULICTURBINE= LPFT,I_OT.
HYDRAVLICTW3111E:LPI_>Nale= "LPFT".

HYDRAULICT_31_:LPFT>PowerCoupledTo = "LPFP".

HYDRAULIC_T_31NE:LPFT>Couplingsensor= ""
HYDRAULICT_BIR:LPFT>Neditm= LiquidFuel.
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HYDRAULIC_I_:_>Na_ = "_".

HYDRAULICTURBINE:LPOT>PoverCoupledTo = "LPOP".

HYDRAULIC-TURBI_:LPOT>CouplingSensor= ""
HYD_ULIC-TUP3I_:LPOT>MediuR= LOX.

assertclassGASTURBIME: HPFT,BPOT.

GASTURBINE:KP_>HaBe= "HPFT".

GAS-TU]_BINE:_FT>HediulInput= "FPB".

GAST_I_:_FT>Power Direction= Out.

GAS-TURBI_:HPFT>PowerCoupledTo = "IPFP".

GASTURBI_:KPOT>Nale: "_".

assertclansTURBOPUMP: LPFTP,HPFTP,LPOTP,HPOTP.

TURBOP_:LPl_P>Wale: "LPFTP".

TURBOP_:LPFTP>IsComposedOf : "LPFPLPFT".

TURBOP_:HPFTP>NaRe: "HPFTP".

TURBO-P_(P:_FTP>IsComposedOf : "KPI9HPI_".

T_ POMP:LPOTP>Male: "LPOTP".

TURBOP_P:LPOTP>IsComposedOf : "LPOPLPOT".

TURBOPUMP:BPOTP>Name= "HPOTP".

TLg_DP_:I_)TP>IsColposedOf = "HPOPHPOT".

TURBOPt_:LPFTP>ID: "2411R1".

TURBOPUMP:HPFTP>ID= "4306".

TURBO-PU](P:LPOTP>ID= "2311".

TURBOPD_(P:HPOTP>ID= "0710".

assertclassVALVE: OPOV,FPOV.
VALVE:OPOV>Mame: "OPOV".

VALVE:FPOV>Male: "i_OV".

VA/IE:FPOV>PowerDirection= In.

VALVE:FK)V>PowerCoupledTo = "ECI".

VALVE:FPOV>IediuaOutput = "_".

asertclassI(AI(I_= HAI(I.
MAMI_LD:I(ANI>Mame= "HAM1".

assertcla_PIPE= FIOI,0101.
PIPE:FlOl>Namme: "FIOI".

PIPE:FlOl>Hediul Input = "LPFP".
PIPE:FIOI>HediumOutput: "HPFP".

PlPE:OlOl>Mame: "0101".

assertclass _ : FIB,0_.
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BO_[]_:IQ_B>NaM: "FPB".

BURNER:PPB>HediumInput: "I_OV".

BIIRRER:PPB>Medi.m= PartiallyBurnedFuel.

BU_IEI_:|_B>HediumOutput : "_1_".

B_.l_E1_:OPB>Name= "OI_",

assertclass SENSOR= S1, $2, $3, $4, S5, S6.
SDiSOlhSI>Nam: "Sl".
SEMSOR:Sl>ComponentName: "LP_ n.
S_iSOR:Sl>Parameter Name -- "LPPP FUELDISC_IPR".

SEMSOR:St>Loeation= Medium Output. - -
SB_R:S2>Mame= "$2".

SB_R:S2>Co_nent Name= "_".
Sl_SOR:S2>Parameter Name : "LPPP SIIAFTSPE_".

SZilSOl_:S2>I_cation : Energy Input. -
S_SOR:S3>Mame: "$3".

S_SOR:S3>ComponentName= "I_V".
Sl_60R:S3>ParameterMame= "I_V POSITIOM".

S_R:S3>Location= EnergyInput"

S_SOR:S4>Name: "$4".

SENSOR:S4>eomponentName: "HPI_".
S_SOR:S4>ParameterName= _I_ DIStil TEHP".

S_ISOR:S4>Location: Medium_Output. -
SZl(SOl_:S5>l(ame: "55".

S_SOR:S5>ComponentName= "HPI_".
SV.NSOR:S5>ParameterName= "HPPPDIS(_PR".
SENSOR:S5>I_eation: Medium_atp_. -

S_SOR:S_>Name: "S6".

S_SOR:S6>ComponentName= _IPI_".
SDISOR:S6>ParameterMale= "HPI_IN PII".

S_lSOR:S6>Lccation= Medium_Input.

assertclassCONTROLLDI= _I.

COWI_OLLE_:ZCI>Name: "ECI".

CONTROLLER:ECI>ControlIedParameter= "IPI_DISCHI_".
COMTROIL_:ECl>ActuatedParameter= "lq_V_ITION".

assertcla_AINXIALI_S: al,a2,a3, a4,aS.
ANOl(ALIES:al>Parameter= "LPFPFUELDISCHPR".
AMOl_IZS:a2>Parumeter= "IIPFT-DISCHTEll.

ANOMALI_:a3>Parameter= "FPOV-PO_ITIOI(".

A]lONALIES:a4>Parameter= "LP?P_ SPEED".
A#OMALIE_:a5>Parameter= "IPFP-INI__.

diagnose= true.
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types:

Size Type: ngl
(k Little, Noticeably, A Lot).

Direction Type: sql

(Too Hi_, Too bow, Garbage).

StatusType:ngl

(Discovered,Verified,Ignored,Explained).

S ChangeType:sql

(User,System).

InterType:ngl

(yes,no).

attributes:

findanomalies:truth.

finished: truth.

T Size: Size Type.

T Direction: Direction type.

T Status:StatusType.

T Value:real.

C Value:real.

V NorlalVariation:real.

V SmallAnomaly:real.

V MediumA_omaly:real.

T Interesting:InterType.

Difference:real

[default:(TValue- C Value)].

Counter:int.

classes:

TESTDATA:
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attributes:

Parameter:str

{explain:"Nameof theparameter").

Value:real

{explain: "Value of the parameter").

Interesting:InterType

[default:no]

{explain:"yes:ifthe valueis usefulfor diagnosis").
t

endclass.

_A_%I_N DATA:

attributes:

Parameter:str

{explain:"Nameof theparameter"}.

Value:real

{explain:"Valueof tlmparameter").
l

endclass.

VARIATIONLIMITS:
attributes:-

Parameter:str.

Sensor: str

(explain:"Thesensorwhichmeasuresthe parameter").

Normal Variation: real

{explain:"Absolutevaluevariationwhichis stillconsiderednormal"}.

SmallAnomly: real
{explain:"Limitfora deviationconsidered small").

MediumA_omaly:real

{explain:"A largerdeviationwillbe consideredlarge"}.
l

endclass.

A_OMALIES:

attributes:
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Parameter:str.

\ [default:""].

Size:SizeType.

Direction:DirectionType.

Status:StatusType.

StatusChangeTime:int.

StatusChangeInitiator:S ChangeType

[default:System].

ExplainedBy:str

{explain:"Thehypotheseswhichexplainthisanomaly"}.
%

endclass.
t
rules:

SizeRulel:

if

V NorlalVariationit abs(Difference)and

V SmallAnolalyge abs(Difference)
then

T Size= A Little.

message"Size= A Little".
endif.

SizeRule2:

if

V SmallAnomalyIt abs(Difference)and

V NodiumAnomalyge abs(Difference)
then

T Size= Noticeably.

message"Size= Noticeably".
endif.

SizeRule3:

if

V MediumAnomalyIt abs(Difference)
then

T Size: A Lot.

message"Size= A Lot".
endif.

DirectionRuleHigh:
if
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Differenceqt (0)and
T Size: A Littleor

T Size: Noticeablyor
TSize :A Lot

then

nessage"Dir= TooHigh".

T Direction= TooHigh.
endif.

DirectionRuleLow:

if

DifferenceIt (0)and
T Size: A Littleor

T Size= Noticeablyor
TSize= ALot

then

_ssage "Dir= Too Low".
T Direction= Too Low.

e_if.

InterestingDataRule:
if

T Direction: Too Highor
T Direction: Too Low

then

T Interesting= yes.
endif.

denons:

Dait:

"_hen

finda,onalies= true

then

Counter= O.

forallt:TK%_DATAdo

forallc:CO_ARISO_DATAdo

ift>Paramter= c>Paramterthen

forallv:VA]_IATIO_LIMITSdo

if t>Para|eter= v>Paramterthen

T Value= t>Value.

C Value= c>Value.

V Nornal variation = v>llormal Variation.

V Siall Anomaly= v>$nall Anomaly.
V Mediun Anonaly = v>l_iun _aolaly.
if T Interesting= yes then

reassertCounter= (Counter+ I).

addnen_erANO[_IES,co_ine("anomaly",Counter).
reassertFinished= false.

foralla:AJ(RALIF_do
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ifdetermined(a>Parameter)= falseand
Finished= false

then

messagecombine("Storingin ", a).
a>Paramter= t>Parameter.

a>Size= T Size.

a>Direction= T Direction.

a>Status= Discovered.

a>StatusChangeInitiator= System.
reassert Finished = true.

endif.
endforall.

endif.

eraseT Value,C Value,V MediuaAnomaly,T Interesting,T Size.

eraseT Direction,V NormalVariation,V SmallAnomaly,Difference.
endif.

endforall.

endif.

endforall.

endforall.

endwhen.

%

actions:

message"Theseactions_illnotbe used".

read"dvarlm.dat",

VARIATION_LIMItS,VARIATIONLIXITS(Parameter,Sensor,
NormalVariation,SmallAnomaly,MediumAnomaly).

\ messagecombine("VLimit:LPFPFUELIM PR n var:"
\ VARIATIONLIXITS:LPFPFUELIM P_>NormalVariation).

message
combine("Readingtestdatafile:tdata.dat").

\ the datafilesmay laterbe replacedby rawdatafilesandread

\ by a C function!

read "tdata.dat",
TEST_DATA,TESTDATA(Parameter,Value).
\ messagecombine("TI)ata:Value:", TEST_DATA:LPFP_I_EL_IM_PR>Value).

message
combine("Readingcomparisondatafile:cdata.dat").

read"cdata.dat",

COMPARISON_DATA,COMPARISON_DATA(Parameter,Value).

findanomalies= true.

l
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types:

RelationType:sgl

(proportional,inverseproportional).
%
attributes:

readingfiles:truth.

GCFile:str.

SCFile:str.

VLFile:str.

TDFile:str.

CDFile:str.

%

classes:

OO_ONE_:

attributes:

Name:str

{explain:"Thenameofthe component"}.

ID:str

{explain:"Theidentificationof theactualcomponent,e.g.serialnumber").

\ If ID = "" checkthe 'IsPartOf' Co_x)nentI

\ Type:sql

\ (pulp,turbine,pipe,valve,burner,sensor).

State:sql

(Assu_d Good, Suspected, _ovn faulty, KnownGood, Exonerated)
[default:AssumedGood].

Is PartOf: str

[default:"none"]

{explain:"Naneof componentthisone is a partof"}.

IsComposedOf: str
[default:""]

{explain:"Listof colponentsof thiscolponent"}.

endclass.

ABSTRACTCO_OI_NT:[inherits:_]
attributes-
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Function: str.

endclass.

COlfflDLI_: [inherits: col_o_rr]
attributes:

Controlled Parameter: stx.

ActuatedParameter:str.

ActuationLimitHigh:real.

ActuationLimitLow:real.

Relation:RelationType

(explain:

"proportional:if actuation9oesup,so doesthecontrolledvalue").
|

endclass.

T_AIO COMPONE_:[inherits:¢O]_)NENT]
attributes:

Mediun:sgl

(LOX,LiquidFuel,PartiallyBurnedFuel,BurnedGas).

MediumInput:str

(explain:"The nam of thecomponentattacl_dto tJ)einput"}.

Nediun Output: str

{explain: "Thenameof the component attachedto tl_ o_tput").

nediulInputSensor:str
(explain: _lrnenameof a sensor at the input (or a list of names)"}.

liediulOutput Sensor:str
{explain: "The nameof a sensor at the output (or a list of names)"}.

Internal Sensor: str

{explain:"_l)enameof an internalsensor").

endcla_.

SENSOR:[i_rits: CONI_)IiENT]
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attributes:

ComponentName:sir

{explain:"Thenameof thenearestcomponent"}.

Location:ngl

(Inside,Nedium_Input,Medium_OutNt, _ Input,EnergyOutput)

(explain:"Locationrelativeto thecolponent"}.

ParameterType:ngl

(Temperature,Pressure,FlovRate,UalvePosition).

ParameterNam: str

(explain:"Thenameof themeasuredparameter").

CurrentValue:real.

SensorType:sgl

(Single,Redundant,Average)
{explain:"An 'average'sensoraveragesthereadings",

"fromtwo or more'redundant'sensors").

Average Sensor Name:str
{explain: "The name of the averaging sensor if this is a redundant sensor").

endclass.

TURBOPUNP:[inherits:ABSTRACT_CONPOI_]
attributes:

RunTime: int

{explain:"l_ber of secondsithas run"}.
l

endclass.

_%NIFOLD:[i_rits: THE_O_COIS_)]_fT]
attributes:

NumberOf Inputs: int.

limberOf Outputs: int.

endclass.

ENERGYCO_(X_NP:[inherits:THK_NO_CONPONE_]
attributes:-
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Efficiency: real.

PowerCoupledTo:sir

{explain:"Thenameof the componentwhichiscoupledto thisone"}.

PowerDirection:sgl

(In,Out)

{explain: "Inmeansenergyis transferredto themedimm,",

"Out_ ot .rvay"}.

PowerResult:str

{explain:"Thequantitywhichis affectedby thepowerinput"}.

\ e.g. for a pumpthis is the pressure difference!
Coupling Sensor: str

{explain:"A sensorwhichmeasurestheenergyce_liM mechanism").
t

endclass.

POMP: [i_erita: _GY_COlrv OoHP]

endclass.

TURBINE:[inherits:EN_GY_OONV_COMP]

endclass.

GASTURBINE:[inherits:TIP3IWE]

endclass.

HYDRAULICTUI_IR: [inherits:TURBINE]

endclass.

PIPE:[inherits:THEIMO_(X)MPON_]
attributes:

Normal Pressure Drop: real.

endclass.

_.J_: [i_erits: TgEI_O_]

endclass.

VALVE:[iBberits: ENEI_GY_OONV_OONP]
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endclass.

FILE:
attributes:

Name:str.

Type: sql
(generalconfiguration,specificconfiguration,variationlimits,

testdata,comparisondata).

ComparisonType:sgl

{none,previoustest,averagedata,Wo sic_alimit,absolutelimit).
l

endclass.

\ filenamesarereadfrom
TESTDATA:

attributes:

Parameter: str

{explain:"Nameof tim parameter").

Value:real

{explain:"Valueof tim parameter"}.

Interestinq:sql (yes,no)

[default:no]

{explain:"yes:if tlmvalueis usefulfordiagnosis"}.

endclass.

COI(PARISONDATA:

attributes:

Parameter:str

{explain:_am of thei_ramtern}.

Value: real

{explain: "Value of tim parameter").

endclass.

VARIATIONLI_T$:
attributes:-

Parameter:str.
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Sensor:str

(explain: "Thesensorw_cb measures the parameter"}.

NormalVariation: real

{explain: "Absolute value variation which is still considered normal").

SmallAnomaly:real

(explain:"Limitfora deviationconsideredsmall"}.

Nediul Anomaly: real

(explain: "A larger deviation will be considered large"}.

endclass.

rules:

findgeneral configurationFile:
f:FILE
if

f > Type= general configuration
then

GCFile= f>Wam.

endif.

findspecificconfigurationFile:
f:FIL£

if

f > Type = specificconfiguration
then

SCFile= f>lam.

endif.

find var lim File:
f:FILE
if

f > Type= variationlimits
then

VLFile = f>Nam.
endif.

findtestdataFile:

f:FILE

if

f > Type= test data
then

TI)File= f>Nam.

eedif.
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find ¢oM_rison data File:
f:FILE
if

f > Type : co_rison data
then
@File = f>gane.

endif.

t

deBons:

act demon:
when

readinq files = true
then

Nssa_
coibine ("Readinq general configuration file: ', GCFile).

read C_File,
POMP,_ (Nue, Is Part Of, Is Co_d Of,

Nediul, lk_iu Input, lk_liul output,
Mediul Input Sensor, Neditm Output Sensor,
Internal Sensor, Efficiency, Power Coupled To,
Power Direction, Couplinq Sensor),

GAS_TU]_IIE,GAS_TUI_II_(lale, Is Part Of, Is CO_ Of,
Nediua, Hediua Input, ]_diun Output,

MediumInputSensor,]k_liuuOutputSensor,
InternalSensor,Efficiency,PowercoupledTo,

PowerDirection,couplinqSensor),

HYDRADLIC_TURBIIE,
HYDIAULICTURBI_ (Male,IsPartOf, IscoeposedOf,

Nediul, It.ll.. Input, IL6diulOutput,
Nediu| Input Sensor, Nediua Output Sensor,
Internal Semor, Efficie_/, Power Coupled To,
Pover Direction, Couplinq Sensor),

TU_O__, TU___ (Nae, Is Part Of, Is Cowosed Of, Function),
PIPE, PIPE (Hale, Is Part Of, Is Co_-_! Of,

l_ii.., l_liua Input, I_iiu_ Output,
l_iua Input Sensor, lk_iiu Output Sensor,
Internal Sensor, Ibrml Pressure Drop),

LUfII_LD, lt_II_I/) (Nae, Is Part Of, Is CO_I Of,
lk_liua, l_li_ Input, l_liua Output,

kliu_ Input Sermor, l_liu_ Output Sensor,
Internal Sensor,]h_berOf Inputs,_ Of Outputs),

SBSO_, SD_O_ (Nero,Is Part Of, Is Co_d Of,
Co_q_nentNam, Location,ParamterType,

ParameterNne, Semor Type,Averaqe SensorlaM),

IN]_, _ (Male,Is PartOf, Is CoepusedOf,

Nedi._, lt_li_ Input, l_liu_ Output,

lqediu_InputSensor,NediunOutputSensor,
InternalSensor),

VALVE,VALVE(Nane,Is PartOf,Is CoM_-_IOf,
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Hedi_m,IridiumInput,KediumOutput,

)l_iumInputSensor,HediumOutputSensor,
InternalSensor,Efficiency,_wer CoupledTo,

_wer Direction,CouplinqSensor),

CONT_OLL_,CONTI_LIn(Name,ControlledParameter,

ActuatedParameter).

\messagecombine("GCOnf:_ Name:",l_IP:l_l_>Nam).

message
combine("Readinqsl_cificconfic_rationfile:", SCFile).

readS_File,

T_.30_ (ID,)_mTime).

\ messagecombine("SCOnf:TI_30_I_IPID:", T_30_I_P:_I_>ID).

m_sage
combine("Readil_variationlimitfile:",ULFile).

read_File,

VA_IATION_LII(ITS,VA)/ATIONLIMITS(Parameter,Sensor,
NormalVariation,SiallAnomaly,MediumAnomaly).

\merge combine ("_imit:_ FUELIN P_ n var: "-- -- -- @

\ VAIILkTION_LIMITS:IR__I_EL_IN_PR>NormalVariation).

message
combine("Readi_testdatafile:", )File).

\the datafilesmaylaterbe replacedby rav datafilesandread

\ by a C f_ion!
readll)File,

TEST_DA)A,TESTDATA(Parameter,Value).
\m_age combine("ll)ata:Value:", T_T_DATA:_FP_IIJEL_IN_PII>Ualue).

me_age
combine("leadin_comparisondatafile:", Cl)File).

read @File,
COIP_ISONDATA,COMPARISONDATA(Parameter, Value).

\ message combine ("CData: _lue: ", O_PIL_ISON_DATA:I,PFP_I__ll__>Value).
break.
e_,_en.

mensage"TI_ actionsrill_t be used".

addmember_ILE,"filel","file2","file3","file4","file5".

FILE:filel>lh/pe= ge,eralconfig,ration.

FILE:filel>Name= "o/o,f.dat".

FILE:filel>Com_arisonType= none.

FI_:file2>Name= "sco_.dat".

FI_:file2>Type= sl_ificco_iguration.

Fl_:fileDCom_)arisonType= none.

FI_E:file3>lh/l_: variationlimit_.
_ILE:file3>Name= "dvarlm.dat".

FILE:file3>Co_arisonType: none.
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FILE:file4>_pe= testdata.
FI_:file4>Na_= "tdata.dat".

FII_:file4>¢omparisonType: none.

FILE:file5>Type : comparison data.
FILE:fileS>Name: "cdata.dat".

FILE:fileS>Co_arison Type = previous test.

readingfiles= true.
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\ KB to createstrategy

constants:

\ l_e followingconstantsare usedformessagesinthe actionssection.

attributes:

find task: sgl (done, cannot find).

classes:

TASK:
attributes:

time:int.

priority:int.
taskname:sir.

knowledgesource: str.

endclass.

REQUEST:
attributes:

bogus: int.

endclas.

OFFEII:
attributes:

bogus:int.

endclass.

lqlles:

Createtasks:

if

true
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then

findtask: done.

endif.

demons:
DI:

vben

find task= &M

then

addmld_erTASK,"tl","t2","1:3","t4I, "1:5","t6R.
TASK:tl> tim = I.

TLg{:tl> priority= 50.

TASK:tl> taskhue = "greetuser".

TASK:tl> ]movleck_esource= "usor_IFl".
T_:t4 > tim --I.

TASK:t4> priority= 47.

TASK:t4> taskname= "getfile.am".

TASK:t4>kDovledgesource= "_er_IF2".
TASK:t3> tim = I.

TLg(:t3> priority= 45.
TA_:t3 > tasknau = "readdatafiles'.

TASK:t3> knovle_jesource= "filereader".
TL_K:t5>tim = i.

TASK:t5> priority= 40.
TAb:t5 > taskname= "findanomalies".

TASK:t5> k.owledgesource= "dataanalyzer".
TASK:t6>tim = I.

TASK:t6> priority= 35.

TASK:t6> task.am = "diagaose".

TASK:t6> knowledgesource: "diag_xNsticias'.
T_:U > tim = I.

T_K:t2 > priority--i0.
TASK:t2> tasknne : "EXIT".

TJ_:t2 > knovle_je source : "none".
en&ben.

_age b_maer,
welOOlle,
ban_r.
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